Step |
Hyp |
Ref |
Expression |
1 |
|
unidm |
⊢ ( { 𝑁 } ∪ { 𝑁 } ) = { 𝑁 } |
2 |
1
|
eqcomi |
⊢ { 𝑁 } = ( { 𝑁 } ∪ { 𝑁 } ) |
3 |
|
oveq1 |
⊢ ( 𝑀 = 𝑁 → ( 𝑀 ... 𝑁 ) = ( 𝑁 ... 𝑁 ) ) |
4 |
|
fzsn |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) |
5 |
3 4
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 = 𝑁 ) → ( 𝑀 ... 𝑁 ) = { 𝑁 } ) |
6 |
|
sneq |
⊢ ( 𝑀 = 𝑁 → { 𝑀 } = { 𝑁 } ) |
7 |
|
oveq1 |
⊢ ( 𝑀 = 𝑁 → ( 𝑀 + 1 ) = ( 𝑁 + 1 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑀 = 𝑁 → ( ( 𝑀 + 1 ) ..^ 𝑁 ) = ( ( 𝑁 + 1 ) ..^ 𝑁 ) ) |
9 |
6 8
|
uneq12d |
⊢ ( 𝑀 = 𝑁 → ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ( { 𝑁 } ∪ ( ( 𝑁 + 1 ) ..^ 𝑁 ) ) ) |
10 |
9
|
uneq1d |
⊢ ( 𝑀 = 𝑁 → ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) = ( ( { 𝑁 } ∪ ( ( 𝑁 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |
11 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
12 |
11
|
lep1d |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ≤ ( 𝑁 + 1 ) ) |
13 |
|
peano2z |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ ) |
14 |
13
|
zred |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℝ ) |
15 |
11 14
|
lenltd |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ≤ ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) < 𝑁 ) ) |
16 |
12 15
|
mpbid |
⊢ ( 𝑁 ∈ ℤ → ¬ ( 𝑁 + 1 ) < 𝑁 ) |
17 |
|
fzonlt0 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑁 + 1 ) < 𝑁 ↔ ( ( 𝑁 + 1 ) ..^ 𝑁 ) = ∅ ) ) |
18 |
13 17
|
mpancom |
⊢ ( 𝑁 ∈ ℤ → ( ¬ ( 𝑁 + 1 ) < 𝑁 ↔ ( ( 𝑁 + 1 ) ..^ 𝑁 ) = ∅ ) ) |
19 |
16 18
|
mpbid |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 + 1 ) ..^ 𝑁 ) = ∅ ) |
20 |
19
|
uneq2d |
⊢ ( 𝑁 ∈ ℤ → ( { 𝑁 } ∪ ( ( 𝑁 + 1 ) ..^ 𝑁 ) ) = ( { 𝑁 } ∪ ∅ ) ) |
21 |
|
un0 |
⊢ ( { 𝑁 } ∪ ∅ ) = { 𝑁 } |
22 |
20 21
|
eqtrdi |
⊢ ( 𝑁 ∈ ℤ → ( { 𝑁 } ∪ ( ( 𝑁 + 1 ) ..^ 𝑁 ) ) = { 𝑁 } ) |
23 |
22
|
uneq1d |
⊢ ( 𝑁 ∈ ℤ → ( ( { 𝑁 } ∪ ( ( 𝑁 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) = ( { 𝑁 } ∪ { 𝑁 } ) ) |
24 |
10 23
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 = 𝑁 ) → ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) = ( { 𝑁 } ∪ { 𝑁 } ) ) |
25 |
2 5 24
|
3eqtr4a |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 = 𝑁 ) → ( 𝑀 ... 𝑁 ) = ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |
26 |
25
|
ex |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 = 𝑁 → ( 𝑀 ... 𝑁 ) = ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) ) |
27 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
28 |
26 27
|
syl11 |
⊢ ( 𝑀 = 𝑁 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) ) |
29 |
|
fzisfzounsn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
30 |
29
|
adantl |
⊢ ( ( ¬ 𝑀 = 𝑁 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
31 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
32 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ∧ ¬ 𝑀 = 𝑁 ) → 𝑀 ∈ ℤ ) |
33 |
|
simpl2 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ∧ ¬ 𝑀 = 𝑁 ) → 𝑁 ∈ ℤ ) |
34 |
|
nesym |
⊢ ( 𝑁 ≠ 𝑀 ↔ ¬ 𝑀 = 𝑁 ) |
35 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
36 |
|
ltlen |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀 ) ) ) |
37 |
35 11 36
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀 ) ) ) |
38 |
37
|
biimprd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀 ) → 𝑀 < 𝑁 ) ) |
39 |
38
|
exp4b |
⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → ( 𝑀 ≤ 𝑁 → ( 𝑁 ≠ 𝑀 → 𝑀 < 𝑁 ) ) ) ) |
40 |
39
|
3imp |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 ≠ 𝑀 → 𝑀 < 𝑁 ) ) |
41 |
34 40
|
syl5bir |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( ¬ 𝑀 = 𝑁 → 𝑀 < 𝑁 ) ) |
42 |
41
|
imp |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ∧ ¬ 𝑀 = 𝑁 ) → 𝑀 < 𝑁 ) |
43 |
32 33 42
|
3jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ∧ ¬ 𝑀 = 𝑁 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ) |
44 |
43
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( ¬ 𝑀 = 𝑁 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ) ) |
45 |
31 44
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑀 = 𝑁 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ) ) |
46 |
45
|
impcom |
⊢ ( ( ¬ 𝑀 = 𝑁 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ) |
47 |
|
fzopred |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) → ( 𝑀 ..^ 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ) |
48 |
46 47
|
syl |
⊢ ( ( ¬ 𝑀 = 𝑁 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ..^ 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ) |
49 |
48
|
uneq1d |
⊢ ( ( ¬ 𝑀 = 𝑁 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) = ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |
50 |
30 49
|
eqtrd |
⊢ ( ( ¬ 𝑀 = 𝑁 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... 𝑁 ) = ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |
51 |
50
|
ex |
⊢ ( ¬ 𝑀 = 𝑁 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) ) |
52 |
28 51
|
pm2.61i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |