Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) → 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) |
2 |
|
elfzelz |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → 𝐷 ∈ ℤ ) |
3 |
2
|
adantr |
⊢ ( ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) → 𝐷 ∈ ℤ ) |
4 |
|
fzospliti |
⊢ ( ( 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝑥 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝑥 ∈ ( 𝐷 ..^ 𝐶 ) ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) → ( 𝑥 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝑥 ∈ ( 𝐷 ..^ 𝐶 ) ) ) |
6 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝑥 ∈ ( 𝐷 ..^ 𝐶 ) ) ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) → 𝑥 ∈ ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) |
8 |
7
|
ex |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) → 𝑥 ∈ ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) ) |
9 |
8
|
ssrdv |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐵 ..^ 𝐶 ) ⊆ ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) |
10 |
|
elfzuz3 |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐷 ) ) |
11 |
|
fzoss2 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐷 ) → ( 𝐵 ..^ 𝐷 ) ⊆ ( 𝐵 ..^ 𝐶 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐵 ..^ 𝐷 ) ⊆ ( 𝐵 ..^ 𝐶 ) ) |
13 |
|
elfzuz |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
14 |
|
fzoss1 |
⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐷 ..^ 𝐶 ) ⊆ ( 𝐵 ..^ 𝐶 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐷 ..^ 𝐶 ) ⊆ ( 𝐵 ..^ 𝐶 ) ) |
16 |
12 15
|
unssd |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ⊆ ( 𝐵 ..^ 𝐶 ) ) |
17 |
9 16
|
eqssd |
⊢ ( 𝐷 ∈ ( 𝐵 ... 𝐶 ) → ( 𝐵 ..^ 𝐶 ) = ( ( 𝐵 ..^ 𝐷 ) ∪ ( 𝐷 ..^ 𝐶 ) ) ) |