| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℝ ) |
| 2 |
|
elfzoelz |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 4 |
3
|
zred |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 5 |
|
lelttric |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷 ) ) |
| 6 |
1 4 5
|
syl2an2 |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷 ) ) |
| 7 |
6
|
orcomd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴 ) ) |
| 8 |
|
elfzole1 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ≤ 𝐴 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ≤ 𝐴 ) |
| 10 |
9
|
a1d |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 < 𝐷 → 𝐵 ≤ 𝐴 ) ) |
| 11 |
10
|
ancrd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 < 𝐷 → ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ) ) |
| 12 |
|
elfzolt2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 < 𝐶 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 < 𝐶 ) |
| 14 |
13
|
a1d |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ≤ 𝐴 → 𝐴 < 𝐶 ) ) |
| 15 |
14
|
ancld |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ≤ 𝐴 → ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 16 |
11 15
|
orim12d |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴 ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ∨ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) ) |
| 17 |
7 16
|
mpd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ∨ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 18 |
|
elfzoel1 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
| 20 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℤ ) |
| 21 |
|
elfzo |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ) ) |
| 22 |
3 19 20 21
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ) ) |
| 23 |
|
elfzoel2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
| 25 |
|
elfzo |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ↔ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 26 |
3 20 24 25
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ↔ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 27 |
22 26
|
orbi12d |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ) ↔ ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷 ) ∨ ( 𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶 ) ) ) ) |
| 28 |
17 27
|
mpbird |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ..^ 𝐷 ) ∨ 𝐴 ∈ ( 𝐷 ..^ 𝐶 ) ) ) |