Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
2 |
1
|
a1i |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 2 = ( 1 + 1 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + 2 ) = ( 𝐵 + ( 1 + 1 ) ) ) |
4 |
|
eluzelcn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℂ ) |
5 |
|
1cnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 1 ∈ ℂ ) |
6 |
|
add32r |
⊢ ( ( 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐵 + ( 1 + 1 ) ) = ( ( 𝐵 + 1 ) + 1 ) ) |
7 |
4 5 5 6
|
syl3anc |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + ( 1 + 1 ) ) = ( ( 𝐵 + 1 ) + 1 ) ) |
8 |
3 7
|
eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + 2 ) = ( ( 𝐵 + 1 ) + 1 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 2 ) ) = ( 𝐴 ..^ ( ( 𝐵 + 1 ) + 1 ) ) ) |
10 |
|
peano2uz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
11 |
|
fzosplitsn |
⊢ ( ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( ( 𝐵 + 1 ) + 1 ) ) = ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) ∪ { ( 𝐵 + 1 ) } ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( ( 𝐵 + 1 ) + 1 ) ) = ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) ∪ { ( 𝐵 + 1 ) } ) ) |
13 |
|
fzosplitsn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) |
14 |
13
|
uneq1d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) ∪ { ( 𝐵 + 1 ) } ) = ( ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ∪ { ( 𝐵 + 1 ) } ) ) |
15 |
|
unass |
⊢ ( ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ∪ { ( 𝐵 + 1 ) } ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) ) |
16 |
15
|
a1i |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ∪ { ( 𝐵 + 1 ) } ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) ) ) |
17 |
|
df-pr |
⊢ { 𝐵 , ( 𝐵 + 1 ) } = ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) |
18 |
17
|
eqcomi |
⊢ ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) = { 𝐵 , ( 𝐵 + 1 ) } |
19 |
18
|
a1i |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) = { 𝐵 , ( 𝐵 + 1 ) } ) |
20 |
19
|
uneq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ∪ ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 , ( 𝐵 + 1 ) } ) ) |
21 |
14 16 20
|
3eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) ∪ { ( 𝐵 + 1 ) } ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 , ( 𝐵 + 1 ) } ) ) |
22 |
9 12 21
|
3eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 2 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 , ( 𝐵 + 1 ) } ) ) |