Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
2 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) |
3 |
|
uzid |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
4 |
|
peano2uz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) |
6 |
|
elfzuzb |
⊢ ( 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 1 ) ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
7 |
1 5 6
|
sylanbrc |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 1 ) ) ) |
8 |
|
fzosplit |
⊢ ( 𝐵 ∈ ( 𝐴 ... ( 𝐵 + 1 ) ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 1 ) ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 1 ) ) ) ) |
10 |
|
fzosn |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ..^ ( 𝐵 + 1 ) ) = { 𝐵 } ) |
11 |
2 10
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 ..^ ( 𝐵 + 1 ) ) = { 𝐵 } ) |
12 |
11
|
uneq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ∪ ( 𝐵 ..^ ( 𝐵 + 1 ) ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) |
13 |
9 12
|
eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) |