Step |
Hyp |
Ref |
Expression |
1 |
|
fzosplitsn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) |
2 |
1
|
eleq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ↔ 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) ) |
3 |
|
elun |
⊢ ( 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 ∈ { 𝐵 } ) ) |
4 |
|
elsn2g |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ { 𝐵 } ↔ 𝐶 = 𝐵 ) ) |
5 |
4
|
orbi2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 ∈ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |
6 |
3 5
|
syl5bb |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |
7 |
2 6
|
bitrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |