| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzosplitsn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ..^ ( 𝐵  +  1 ) )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 } ) ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐶  ∈  ( 𝐴 ..^ ( 𝐵  +  1 ) )  ↔  𝐶  ∈  ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 } ) ) ) | 
						
							| 3 |  | elun | ⊢ ( 𝐶  ∈  ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 } )  ↔  ( 𝐶  ∈  ( 𝐴 ..^ 𝐵 )  ∨  𝐶  ∈  { 𝐵 } ) ) | 
						
							| 4 |  | elsn2g | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐶  ∈  { 𝐵 }  ↔  𝐶  =  𝐵 ) ) | 
						
							| 5 | 4 | orbi2d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝐶  ∈  ( 𝐴 ..^ 𝐵 )  ∨  𝐶  ∈  { 𝐵 } )  ↔  ( 𝐶  ∈  ( 𝐴 ..^ 𝐵 )  ∨  𝐶  =  𝐵 ) ) ) | 
						
							| 6 | 3 5 | bitrid | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐶  ∈  ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 } )  ↔  ( 𝐶  ∈  ( 𝐴 ..^ 𝐵 )  ∨  𝐶  =  𝐵 ) ) ) | 
						
							| 7 | 2 6 | bitrd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐶  ∈  ( 𝐴 ..^ ( 𝐵  +  1 ) )  ↔  ( 𝐶  ∈  ( 𝐴 ..^ 𝐵 )  ∨  𝐶  =  𝐵 ) ) ) |