Metamath Proof Explorer


Theorem fzossfz

Description: A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzossfz ( 𝐴 ..^ 𝐵 ) ⊆ ( 𝐴 ... 𝐵 )

Proof

Step Hyp Ref Expression
1 elfzofz ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 ∈ ( 𝐴 ... 𝐵 ) )
2 1 ssriv ( 𝐴 ..^ 𝐵 ) ⊆ ( 𝐴 ... 𝐵 )