Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
2 |
|
id |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℤ ) |
3 |
|
peano2z |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ ) |
4 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
5 |
4
|
lep1d |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ≤ ( 𝑁 + 1 ) ) |
6 |
2 3 5
|
3jca |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ≤ ( 𝑁 + 1 ) ) ) |
7 |
1 6
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ≤ ( 𝑁 + 1 ) ) ) |
8 |
|
eluz2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ≤ ( 𝑁 + 1 ) ) ) |
9 |
7 8
|
sylibr |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
10 |
|
fzoss2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( 𝑁 + 1 ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( 𝑁 + 1 ) ) ) |