Metamath Proof Explorer


Theorem fzossnn0

Description: A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018)

Ref Expression
Assertion fzossnn0 ( 𝑀 ∈ ℕ0 → ( 𝑀 ..^ 𝑁 ) ⊆ ℕ0 )

Proof

Step Hyp Ref Expression
1 fzossfz ( 𝑀 ..^ 𝑁 ) ⊆ ( 𝑀 ... 𝑁 )
2 fzss1 ( 𝑀 ∈ ( ℤ ‘ 0 ) → ( 𝑀 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) )
3 nn0uz 0 = ( ℤ ‘ 0 )
4 2 3 eleq2s ( 𝑀 ∈ ℕ0 → ( 𝑀 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) )
5 1 4 sstrid ( 𝑀 ∈ ℕ0 → ( 𝑀 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) )
6 fz0ssnn0 ( 0 ... 𝑁 ) ⊆ ℕ0
7 5 6 sstrdi ( 𝑀 ∈ ℕ0 → ( 𝑀 ..^ 𝑁 ) ⊆ ℕ0 )