Step |
Hyp |
Ref |
Expression |
1 |
|
elfzoel1 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) |
2 |
|
uzid |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
3 |
|
peano2uz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) |
4 |
|
fzoss1 |
⊢ ( ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) → ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ⊆ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) |
5 |
1 2 3 4
|
4syl |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ⊆ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) |
6 |
|
1z |
⊢ 1 ∈ ℤ |
7 |
|
fzoaddel |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 1 ∈ ℤ ) → ( 𝐴 + 1 ) ∈ ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐴 + 1 ) ∈ ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ) |
9 |
5 8
|
sseldd |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) |
10 |
|
elfzoel2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) |
11 |
|
elfzolt3 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 < 𝐶 ) |
12 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
13 |
|
zre |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ ) |
14 |
|
ltle |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) |
15 |
12 13 14
|
syl2an |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) |
16 |
1 10 15
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) |
17 |
11 16
|
mpd |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ≤ 𝐶 ) |
18 |
|
eluz2 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶 ) ) |
19 |
1 10 17 18
|
syl3anbrc |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
20 |
|
fzosplitsni |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ↔ ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) ) |
21 |
19 20
|
syl |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ↔ ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) ) |
22 |
9 21
|
mpbid |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) |