| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzoel1 | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  𝐵  ∈  ℤ ) | 
						
							| 2 |  | uzid | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 3 |  | peano2uz | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐵 )  →  ( 𝐵  +  1 )  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 4 |  | fzoss1 | ⊢ ( ( 𝐵  +  1 )  ∈  ( ℤ≥ ‘ 𝐵 )  →  ( ( 𝐵  +  1 ) ..^ ( 𝐶  +  1 ) )  ⊆  ( 𝐵 ..^ ( 𝐶  +  1 ) ) ) | 
						
							| 5 | 1 2 3 4 | 4syl | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  ( ( 𝐵  +  1 ) ..^ ( 𝐶  +  1 ) )  ⊆  ( 𝐵 ..^ ( 𝐶  +  1 ) ) ) | 
						
							| 6 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 7 |  | fzoaddel | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  ∧  1  ∈  ℤ )  →  ( 𝐴  +  1 )  ∈  ( ( 𝐵  +  1 ) ..^ ( 𝐶  +  1 ) ) ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  ( 𝐴  +  1 )  ∈  ( ( 𝐵  +  1 ) ..^ ( 𝐶  +  1 ) ) ) | 
						
							| 9 | 5 8 | sseldd | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  ( 𝐴  +  1 )  ∈  ( 𝐵 ..^ ( 𝐶  +  1 ) ) ) | 
						
							| 10 |  | elfzoel2 | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  𝐶  ∈  ℤ ) | 
						
							| 11 |  | elfzolt3 | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  𝐵  <  𝐶 ) | 
						
							| 12 |  | zre | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℝ ) | 
						
							| 13 |  | zre | ⊢ ( 𝐶  ∈  ℤ  →  𝐶  ∈  ℝ ) | 
						
							| 14 |  | ltle | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  <  𝐶  →  𝐵  ≤  𝐶 ) ) | 
						
							| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( 𝐵  <  𝐶  →  𝐵  ≤  𝐶 ) ) | 
						
							| 16 | 1 10 15 | syl2anc | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  ( 𝐵  <  𝐶  →  𝐵  ≤  𝐶 ) ) | 
						
							| 17 | 11 16 | mpd | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  𝐵  ≤  𝐶 ) | 
						
							| 18 |  | eluz2 | ⊢ ( 𝐶  ∈  ( ℤ≥ ‘ 𝐵 )  ↔  ( 𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ  ∧  𝐵  ≤  𝐶 ) ) | 
						
							| 19 | 1 10 17 18 | syl3anbrc | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  𝐶  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 20 |  | fzosplitsni | ⊢ ( 𝐶  ∈  ( ℤ≥ ‘ 𝐵 )  →  ( ( 𝐴  +  1 )  ∈  ( 𝐵 ..^ ( 𝐶  +  1 ) )  ↔  ( ( 𝐴  +  1 )  ∈  ( 𝐵 ..^ 𝐶 )  ∨  ( 𝐴  +  1 )  =  𝐶 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  ( ( 𝐴  +  1 )  ∈  ( 𝐵 ..^ ( 𝐶  +  1 ) )  ↔  ( ( 𝐴  +  1 )  ∈  ( 𝐵 ..^ 𝐶 )  ∨  ( 𝐴  +  1 )  =  𝐶 ) ) ) | 
						
							| 22 | 9 21 | mpbid | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ 𝐶 )  →  ( ( 𝐴  +  1 )  ∈  ( 𝐵 ..^ 𝐶 )  ∨  ( 𝐴  +  1 )  =  𝐶 ) ) |