Step |
Hyp |
Ref |
Expression |
1 |
|
znegcl |
⊢ ( 𝐷 ∈ ℤ → - 𝐷 ∈ ℤ ) |
2 |
|
fzoaddel |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ - 𝐷 ∈ ℤ ) → ( 𝐴 + - 𝐷 ) ∈ ( ( 𝐵 + - 𝐷 ) ..^ ( 𝐶 + - 𝐷 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + - 𝐷 ) ∈ ( ( 𝐵 + - 𝐷 ) ..^ ( 𝐶 + - 𝐷 ) ) ) |
4 |
|
elfzoelz |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
6 |
5
|
zcnd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
7 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℤ ) |
8 |
7
|
zcnd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℂ ) |
9 |
6 8
|
negsubd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + - 𝐷 ) = ( 𝐴 − 𝐷 ) ) |
10 |
|
elfzoel1 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) |
11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
12 |
11
|
zcnd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
13 |
12 8
|
negsubd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + - 𝐷 ) = ( 𝐵 − 𝐷 ) ) |
14 |
|
elfzoel2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
16 |
15
|
zcnd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℂ ) |
17 |
16 8
|
negsubd |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐶 + - 𝐷 ) = ( 𝐶 − 𝐷 ) ) |
18 |
13 17
|
oveq12d |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐵 + - 𝐷 ) ..^ ( 𝐶 + - 𝐷 ) ) = ( ( 𝐵 − 𝐷 ) ..^ ( 𝐶 − 𝐷 ) ) ) |
19 |
3 9 18
|
3eltr3d |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 − 𝐷 ) ∈ ( ( 𝐵 − 𝐷 ) ..^ ( 𝐶 − 𝐷 ) ) ) |