Metamath Proof Explorer


Theorem fzosubel3

Description: Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzosubel3 ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴𝐵 ) ∈ ( 0 ..^ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) )
2 elfzoel1 ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) → 𝐵 ∈ ℤ )
3 2 adantr ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℤ )
4 3 zcnd ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℂ )
5 4 addid1d ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + 0 ) = 𝐵 )
6 5 oveq1d ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐵 + 0 ) ..^ ( 𝐵 + 𝐷 ) ) = ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) )
7 1 6 eleqtrrd ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ( ( 𝐵 + 0 ) ..^ ( 𝐵 + 𝐷 ) ) )
8 0zd ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 0 ∈ ℤ )
9 simpr ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℤ )
10 fzosubel2 ( ( 𝐴 ∈ ( ( 𝐵 + 0 ) ..^ ( 𝐵 + 𝐷 ) ) ∧ ( 𝐵 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ) → ( 𝐴𝐵 ) ∈ ( 0 ..^ 𝐷 ) )
11 7 3 8 9 10 syl13anc ( ( 𝐴 ∈ ( 𝐵 ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴𝐵 ) ∈ ( 0 ..^ 𝐷 ) )