| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) ) ) | 
						
							| 2 |  | elfzoel1 | ⊢ ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  𝐵  ∈  ℤ ) | 
						
							| 4 | 3 | zcnd | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  𝐵  ∈  ℂ ) | 
						
							| 5 | 4 | addridd | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  ( 𝐵  +  0 )  =  𝐵 ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  ( ( 𝐵  +  0 ) ..^ ( 𝐵  +  𝐷 ) )  =  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) ) ) | 
						
							| 7 | 1 6 | eleqtrrd | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  𝐴  ∈  ( ( 𝐵  +  0 ) ..^ ( 𝐵  +  𝐷 ) ) ) | 
						
							| 8 |  | 0zd | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  0  ∈  ℤ ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  𝐷  ∈  ℤ ) | 
						
							| 10 |  | fzosubel2 | ⊢ ( ( 𝐴  ∈  ( ( 𝐵  +  0 ) ..^ ( 𝐵  +  𝐷 ) )  ∧  ( 𝐵  ∈  ℤ  ∧  0  ∈  ℤ  ∧  𝐷  ∈  ℤ ) )  →  ( 𝐴  −  𝐵 )  ∈  ( 0 ..^ 𝐷 ) ) | 
						
							| 11 | 7 3 8 9 10 | syl13anc | ⊢ ( ( 𝐴  ∈  ( 𝐵 ..^ ( 𝐵  +  𝐷 ) )  ∧  𝐷  ∈  ℤ )  →  ( 𝐴  −  𝐵 )  ∈  ( 0 ..^ 𝐷 ) ) |