Step |
Hyp |
Ref |
Expression |
1 |
|
fsumm1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
fsumm1.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
3 |
|
fsumm1.3 |
⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) |
4 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
6 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
8 |
7
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 ) |
9 |
8
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 + 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |
10 |
1 2 3
|
fsumm1 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |
11 |
|
fzval3 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) |
13 |
12
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) 𝐴 ) |
14 |
9 10 13
|
3eqtr2rd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 + 𝐵 ) ) |