| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumm1.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | fsumm1.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | fsumm1.3 | ⊢ ( 𝑘  =  𝑁  →  𝐴  =  𝐵 ) | 
						
							| 4 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 6 |  | fzoval | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( 𝑀 ..^ 𝑁 )  =  ( 𝑀 ... ( 𝑁  −  1 ) ) ) | 
						
							| 8 | 7 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝐴  =  Σ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) 𝐴 ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝐴  +  𝐵 )  =  ( Σ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) 𝐴  +  𝐵 ) ) | 
						
							| 10 | 1 2 3 | fsumm1 | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  ( Σ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) 𝐴  +  𝐵 ) ) | 
						
							| 11 |  | fzval3 | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑀 ... 𝑁 )  =  ( 𝑀 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 12 | 5 11 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  =  ( 𝑀 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 13 | 12 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  Σ 𝑘  ∈  ( 𝑀 ..^ ( 𝑁  +  1 ) ) 𝐴 ) | 
						
							| 14 | 9 10 13 | 3eqtr2rd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ ( 𝑁  +  1 ) ) 𝐴  =  ( Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) 𝐴  +  𝐵 ) ) |