| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzel2 | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐴  ∈  ℤ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  𝐴  ∈  ℤ ) | 
						
							| 3 |  | eluzelz | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 4 |  | nn0z | ⊢ ( 𝐶  ∈  ℕ0  →  𝐶  ∈  ℤ ) | 
						
							| 5 |  | zaddcl | ⊢ ( ( 𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( 𝐵  +  𝐶 )  ∈  ℤ ) | 
						
							| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐵  +  𝐶 )  ∈  ℤ ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  𝐵  ∈  ℤ ) | 
						
							| 8 |  | eluzle | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐴  ≤  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  𝐴  ≤  𝐵 ) | 
						
							| 10 |  | nn0ge0 | ⊢ ( 𝐶  ∈  ℕ0  →  0  ≤  𝐶 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  0  ≤  𝐶 ) | 
						
							| 12 |  | eluzelre | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 13 |  | nn0re | ⊢ ( 𝐶  ∈  ℕ0  →  𝐶  ∈  ℝ ) | 
						
							| 14 |  | addge01 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 0  ≤  𝐶  ↔  𝐵  ≤  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  ( 0  ≤  𝐶  ↔  𝐵  ≤  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 16 | 11 15 | mpbid | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  𝐵  ≤  ( 𝐵  +  𝐶 ) ) | 
						
							| 17 | 2 6 7 9 16 | elfzd | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  𝐵  ∈  ( 𝐴 ... ( 𝐵  +  𝐶 ) ) ) | 
						
							| 18 |  | fzosplit | ⊢ ( 𝐵  ∈  ( 𝐴 ... ( 𝐵  +  𝐶 ) )  →  ( 𝐴 ..^ ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  ( 𝐵 ..^ ( 𝐵  +  𝐶 ) ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐴 ..^ ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  ( 𝐵 ..^ ( 𝐵  +  𝐶 ) ) ) ) |