Step |
Hyp |
Ref |
Expression |
1 |
|
elfzolt2 |
⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 < 𝐵 ) |
2 |
1
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑥 < 𝐵 ) |
3 |
|
eluzel2 |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) → 𝐵 ∈ ℤ ) |
4 |
3
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐵 ∈ ℤ ) |
5 |
4
|
zred |
⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
6 |
|
eluzelre |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) → 𝑥 ∈ ℝ ) |
7 |
6
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
8 |
|
eluzle |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) → 𝐵 ≤ 𝑥 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐵 ≤ 𝑥 ) |
10 |
5 7 9
|
lensymd |
⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → ¬ 𝑥 < 𝐵 ) |
11 |
2 10
|
pm2.65i |
⊢ ¬ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
12 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐴 ..^ 𝐵 ) ∩ ( ℤ≥ ‘ 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
13 |
11 12
|
mtbir |
⊢ ¬ 𝑥 ∈ ( ( 𝐴 ..^ 𝐵 ) ∩ ( ℤ≥ ‘ 𝐵 ) ) |
14 |
13
|
nel0 |
⊢ ( ( 𝐴 ..^ 𝐵 ) ∩ ( ℤ≥ ‘ 𝐵 ) ) = ∅ |