| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzolt2 | ⊢ ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  →  𝑥  <  𝐵 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐵 ) )  →  𝑥  <  𝐵 ) | 
						
							| 3 |  | eluzel2 | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝐵 )  →  𝐵  ∈  ℤ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐵 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 5 | 4 | zred | ⊢ ( ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | eluzelre | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝐵 )  →  𝑥  ∈  ℝ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 8 |  | eluzle | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝐵 )  →  𝐵  ≤  𝑥 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐵 ) )  →  𝐵  ≤  𝑥 ) | 
						
							| 10 | 5 7 9 | lensymd | ⊢ ( ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐵 ) )  →  ¬  𝑥  <  𝐵 ) | 
						
							| 11 | 2 10 | pm2.65i | ⊢ ¬  ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 12 |  | elin | ⊢ ( 𝑥  ∈  ( ( 𝐴 ..^ 𝐵 )  ∩  ( ℤ≥ ‘ 𝐵 ) )  ↔  ( 𝑥  ∈  ( 𝐴 ..^ 𝐵 )  ∧  𝑥  ∈  ( ℤ≥ ‘ 𝐵 ) ) ) | 
						
							| 13 | 11 12 | mtbir | ⊢ ¬  𝑥  ∈  ( ( 𝐴 ..^ 𝐵 )  ∩  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 14 | 13 | nel0 | ⊢ ( ( 𝐴 ..^ 𝐵 )  ∩  ( ℤ≥ ‘ 𝐵 ) )  =  ∅ |