Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelre |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℝ ) |
2 |
|
eluzelre |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑥 ∈ ℝ ) |
3 |
|
lelttric |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵 ) ) |
5 |
4
|
orcomd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥 ) ) |
6 |
|
id |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
7 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) |
8 |
|
elfzo2 |
⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵 ) ) |
9 |
|
df-3an |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵 ) ↔ ( ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑥 < 𝐵 ) ) |
10 |
8 9
|
bitri |
⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ↔ ( ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑥 < 𝐵 ) ) |
11 |
10
|
baib |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ) → ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ↔ 𝑥 < 𝐵 ) ) |
12 |
6 7 11
|
syl2anr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ↔ 𝑥 < 𝐵 ) ) |
13 |
|
eluzelz |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑥 ∈ ℤ ) |
14 |
|
eluz |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ 𝐵 ≤ 𝑥 ) ) |
15 |
7 13 14
|
syl2an |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ 𝐵 ≤ 𝑥 ) ) |
16 |
12 15
|
orbi12d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ↔ ( 𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥 ) ) ) |
17 |
5 16
|
mpbird |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
18 |
17
|
ex |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) ) |
19 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
20 |
18 19
|
syl6ibr |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑥 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ) ) |
21 |
20
|
ssrdv |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ℤ≥ ‘ 𝐴 ) ⊆ ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ) |
22 |
|
elfzouz |
⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
23 |
22
|
ssriv |
⊢ ( 𝐴 ..^ 𝐵 ) ⊆ ( ℤ≥ ‘ 𝐴 ) |
24 |
23
|
a1i |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ 𝐵 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ) |
25 |
|
uzss |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ℤ≥ ‘ 𝐵 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ) |
26 |
24 25
|
unssd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ⊆ ( ℤ≥ ‘ 𝐴 ) ) |
27 |
21 26
|
eqssd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ℤ≥ ‘ 𝐴 ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ) |