| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzuz |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
peano2uz |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 4 |
|
elfzuz3 |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 5 |
|
eluzp1p1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
| 7 |
|
elfzuzb |
⊢ ( ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) ) |
| 8 |
3 6 7
|
sylanbrc |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |