Metamath Proof Explorer


Theorem fzp1elp1

Description: Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzp1elp1 ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 elfzuz ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ𝑀 ) )
2 peano2uz ( 𝐾 ∈ ( ℤ𝑀 ) → ( 𝐾 + 1 ) ∈ ( ℤ𝑀 ) )
3 1 2 syl ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 + 1 ) ∈ ( ℤ𝑀 ) )
4 elfzuz3 ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝐾 ) )
5 eluzp1p1 ( 𝑁 ∈ ( ℤ𝐾 ) → ( 𝑁 + 1 ) ∈ ( ℤ ‘ ( 𝐾 + 1 ) ) )
6 4 5 syl ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑁 + 1 ) ∈ ( ℤ ‘ ( 𝐾 + 1 ) ) )
7 elfzuzb ( ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐾 + 1 ) ∈ ( ℤ𝑀 ) ∧ ( 𝑁 + 1 ) ∈ ( ℤ ‘ ( 𝐾 + 1 ) ) ) )
8 3 6 7 sylanbrc ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) )