| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 2 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 3 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 4 |
1 2 3
|
3syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
fzsplit2 |
⊢ ( ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 6 |
4 5
|
mpancom |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 7 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 8 |
1 7
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 9 |
8
|
uneq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 10 |
6 9
|
eqtrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |