| Step | Hyp | Ref | Expression | 
						
							| 1 |  | incom | ⊢ ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ( ( ( 𝑀  +  1 ) ... 𝑁 )  ∩  { 𝑀 } ) | 
						
							| 2 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 3 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 | 3 4 | ltnlei | ⊢ ( 0  <  1  ↔  ¬  1  ≤  0 ) | 
						
							| 6 | 2 5 | mpbi | ⊢ ¬  1  ≤  0 | 
						
							| 7 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 8 | 7 | zred | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 9 |  | leaddle0 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑀  +  1 )  ≤  𝑀  ↔  1  ≤  0 ) ) | 
						
							| 10 | 8 4 9 | sylancl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀  +  1 )  ≤  𝑀  ↔  1  ≤  0 ) ) | 
						
							| 11 | 6 10 | mtbiri | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ¬  ( 𝑀  +  1 )  ≤  𝑀 ) | 
						
							| 12 | 11 | intnanrd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ¬  ( ( 𝑀  +  1 )  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 13 | 12 | intnand | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ¬  ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) ) ) | 
						
							| 14 |  | elfz2 | ⊢ ( 𝑀  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) ) ) | 
						
							| 15 | 13 14 | sylnibr | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ¬  𝑀  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 16 |  | disjsn | ⊢ ( ( ( ( 𝑀  +  1 ) ... 𝑁 )  ∩  { 𝑀 } )  =  ∅  ↔  ¬  𝑀  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝑀  +  1 ) ... 𝑁 )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 18 | 1 17 | eqtrid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ∅ ) |