Step |
Hyp |
Ref |
Expression |
1 |
|
fz12pr |
⊢ ( 1 ... 2 ) = { 1 , 2 } |
2 |
1
|
raleqi |
⊢ ( ∀ 𝑥 ∈ ( 1 ... 2 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ∀ 𝑥 ∈ { 1 , 2 } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ) |
3 |
|
1ex |
⊢ 1 ∈ V |
4 |
|
2ex |
⊢ 2 ∈ V |
5 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) |
6 |
|
iftrue |
⊢ ( 𝑥 = 1 → if ( 𝑥 = 1 , 𝐴 , 𝐵 ) = 𝐴 ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( 𝐹 ‘ 1 ) = 𝐴 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 2 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 2 ) ) |
9 |
|
1ne2 |
⊢ 1 ≠ 2 |
10 |
9
|
necomi |
⊢ 2 ≠ 1 |
11 |
|
pm13.181 |
⊢ ( ( 𝑥 = 2 ∧ 2 ≠ 1 ) → 𝑥 ≠ 1 ) |
12 |
10 11
|
mpan2 |
⊢ ( 𝑥 = 2 → 𝑥 ≠ 1 ) |
13 |
12
|
neneqd |
⊢ ( 𝑥 = 2 → ¬ 𝑥 = 1 ) |
14 |
13
|
iffalsed |
⊢ ( 𝑥 = 2 → if ( 𝑥 = 1 , 𝐴 , 𝐵 ) = 𝐵 ) |
15 |
8 14
|
eqeq12d |
⊢ ( 𝑥 = 2 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |
16 |
3 4 7 15
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { 1 , 2 } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |
17 |
2 16
|
bitri |
⊢ ( ∀ 𝑥 ∈ ( 1 ... 2 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |