Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) |
2 |
1
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ℤ ) |
3 |
2
|
zred |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ℝ ) |
4 |
|
eluzel2 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐴 ∈ ℤ ) |
6 |
5
|
zred |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐴 ∈ ℝ ) |
7 |
3 6
|
resubcld |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
8 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ℤ ) |
9 |
8
|
zred |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ℝ ) |
10 |
9 6
|
resubcld |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐶 − 𝐴 ) ∈ ℝ ) |
11 |
|
1red |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 1 ∈ ℝ ) |
12 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 < 𝐶 ) |
13 |
3 9 6 12
|
ltsub1dd |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐵 − 𝐴 ) < ( 𝐶 − 𝐴 ) ) |
14 |
7 10 11 13
|
ltadd1dd |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( ( 𝐵 − 𝐴 ) + 1 ) < ( ( 𝐶 − 𝐴 ) + 1 ) ) |
15 |
|
hashfz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) + 1 ) ) |
17 |
3 9 12
|
ltled |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 ≤ 𝐶 ) |
18 |
|
eluz2 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶 ) ) |
19 |
2 8 17 18
|
syl3anbrc |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
20 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
21 |
|
uztrn |
⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
23 |
|
hashfz |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) = ( ( 𝐶 − 𝐴 ) + 1 ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) = ( ( 𝐶 − 𝐴 ) + 1 ) ) |
25 |
14 16 24
|
3brtr4d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) < ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) ) |
26 |
|
fzfi |
⊢ ( 𝐴 ... 𝐵 ) ∈ Fin |
27 |
|
fzfi |
⊢ ( 𝐴 ... 𝐶 ) ∈ Fin |
28 |
|
hashsdom |
⊢ ( ( ( 𝐴 ... 𝐵 ) ∈ Fin ∧ ( 𝐴 ... 𝐶 ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) < ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) ↔ ( 𝐴 ... 𝐵 ) ≺ ( 𝐴 ... 𝐶 ) ) ) |
29 |
26 27 28
|
mp2an |
⊢ ( ( ♯ ‘ ( 𝐴 ... 𝐵 ) ) < ( ♯ ‘ ( 𝐴 ... 𝐶 ) ) ↔ ( 𝐴 ... 𝐵 ) ≺ ( 𝐴 ... 𝐶 ) ) |
30 |
25 29
|
sylib |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ℤ ) ∧ 𝐵 < 𝐶 ) → ( 𝐴 ... 𝐵 ) ≺ ( 𝐴 ... 𝐶 ) ) |