Metamath Proof Explorer


Theorem fzss2

Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion fzss2 ( 𝑁 ∈ ( ℤ𝐾 ) → ( 𝑀 ... 𝐾 ) ⊆ ( 𝑀 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝑘 ∈ ( ℤ𝑀 ) )
2 1 adantl ( ( 𝑁 ∈ ( ℤ𝐾 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝑘 ∈ ( ℤ𝑀 ) )
3 elfzuz3 ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝐾 ∈ ( ℤ𝑘 ) )
4 uztrn ( ( 𝑁 ∈ ( ℤ𝐾 ) ∧ 𝐾 ∈ ( ℤ𝑘 ) ) → 𝑁 ∈ ( ℤ𝑘 ) )
5 3 4 sylan2 ( ( 𝑁 ∈ ( ℤ𝐾 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝑁 ∈ ( ℤ𝑘 ) )
6 elfzuzb ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑘 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ( ℤ𝑘 ) ) )
7 2 5 6 sylanbrc ( ( 𝑁 ∈ ( ℤ𝐾 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) )
8 7 ex ( 𝑁 ∈ ( ℤ𝐾 ) → ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) )
9 8 ssrdv ( 𝑁 ∈ ( ℤ𝐾 ) → ( 𝑀 ... 𝐾 ) ⊆ ( 𝑀 ... 𝑁 ) )