Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzssp1 | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzel2 | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 2 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 3 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 4 | fzss2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) | |
| 5 | 1 2 3 4 | 4syl | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 6 | id | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 7 | 5 6 | sseldd | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 8 | 7 | ssriv | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) |