| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 3 |
|
fzsuc |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( ( 𝑀 + 1 ) + 1 ) ) = ( ( 𝑀 ... ( 𝑀 + 1 ) ) ∪ { ( ( 𝑀 + 1 ) + 1 ) } ) ) |
| 4 |
1 2 3
|
3syl |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( ( 𝑀 + 1 ) + 1 ) ) = ( ( 𝑀 ... ( 𝑀 + 1 ) ) ∪ { ( ( 𝑀 + 1 ) + 1 ) } ) ) |
| 5 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 7 |
|
addass |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + ( 1 + 1 ) ) ) |
| 8 |
6 6 7
|
mp3an23 |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + ( 1 + 1 ) ) ) |
| 9 |
5 8
|
syl |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + ( 1 + 1 ) ) ) |
| 10 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 11 |
10
|
oveq2i |
⊢ ( 𝑀 + 2 ) = ( 𝑀 + ( 1 + 1 ) ) |
| 12 |
9 11
|
eqtr4di |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) + 1 ) = ( 𝑀 + 2 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( ( 𝑀 + 1 ) + 1 ) ) = ( 𝑀 ... ( 𝑀 + 2 ) ) ) |
| 14 |
|
fzpr |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
| 15 |
12
|
sneqd |
⊢ ( 𝑀 ∈ ℤ → { ( ( 𝑀 + 1 ) + 1 ) } = { ( 𝑀 + 2 ) } ) |
| 16 |
14 15
|
uneq12d |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 ... ( 𝑀 + 1 ) ) ∪ { ( ( 𝑀 + 1 ) + 1 ) } ) = ( { 𝑀 , ( 𝑀 + 1 ) } ∪ { ( 𝑀 + 2 ) } ) ) |
| 17 |
|
df-tp |
⊢ { 𝑀 , ( 𝑀 + 1 ) , ( 𝑀 + 2 ) } = ( { 𝑀 , ( 𝑀 + 1 ) } ∪ { ( 𝑀 + 2 ) } ) |
| 18 |
16 17
|
eqtr4di |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 ... ( 𝑀 + 1 ) ) ∪ { ( ( 𝑀 + 1 ) + 1 ) } ) = { 𝑀 , ( 𝑀 + 1 ) , ( 𝑀 + 2 ) } ) |
| 19 |
4 13 18
|
3eqtr3d |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 2 ) ) = { 𝑀 , ( 𝑀 + 1 ) , ( 𝑀 + 2 ) } ) |