| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
⊢ 1 ∈ ℤ |
| 2 |
|
fztp |
⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } |
| 4 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 5 |
|
2cn |
⊢ 2 ∈ ℂ |
| 6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 7 |
5 6
|
addcomi |
⊢ ( 2 + 1 ) = ( 1 + 2 ) |
| 8 |
4 7
|
eqtri |
⊢ 3 = ( 1 + 2 ) |
| 9 |
8
|
oveq2i |
⊢ ( 1 ... 3 ) = ( 1 ... ( 1 + 2 ) ) |
| 10 |
|
tpeq3 |
⊢ ( 3 = ( 1 + 2 ) → { 1 , 2 , 3 } = { 1 , 2 , ( 1 + 2 ) } ) |
| 11 |
8 10
|
ax-mp |
⊢ { 1 , 2 , 3 } = { 1 , 2 , ( 1 + 2 ) } |
| 12 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 13 |
|
tpeq2 |
⊢ ( 2 = ( 1 + 1 ) → { 1 , 2 , ( 1 + 2 ) } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) |
| 14 |
12 13
|
ax-mp |
⊢ { 1 , 2 , ( 1 + 2 ) } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } |
| 15 |
11 14
|
eqtri |
⊢ { 1 , 2 , 3 } = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } |
| 16 |
3 9 15
|
3eqtr4i |
⊢ ( 1 ... 3 ) = { 1 , 2 , 3 } |
| 17 |
16
|
raleqi |
⊢ ( ∀ 𝑥 ∈ ( 1 ... 3 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ∀ 𝑥 ∈ { 1 , 2 , 3 } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ) |
| 18 |
|
1ex |
⊢ 1 ∈ V |
| 19 |
|
2ex |
⊢ 2 ∈ V |
| 20 |
|
3ex |
⊢ 3 ∈ V |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) |
| 22 |
|
iftrue |
⊢ ( 𝑥 = 1 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = 𝐴 ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( 𝐹 ‘ 1 ) = 𝐴 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = 2 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 2 ) ) |
| 25 |
|
1re |
⊢ 1 ∈ ℝ |
| 26 |
|
1lt2 |
⊢ 1 < 2 |
| 27 |
25 26
|
gtneii |
⊢ 2 ≠ 1 |
| 28 |
|
neeq1 |
⊢ ( 𝑥 = 2 → ( 𝑥 ≠ 1 ↔ 2 ≠ 1 ) ) |
| 29 |
27 28
|
mpbiri |
⊢ ( 𝑥 = 2 → 𝑥 ≠ 1 ) |
| 30 |
|
ifnefalse |
⊢ ( 𝑥 ≠ 1 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) |
| 31 |
29 30
|
syl |
⊢ ( 𝑥 = 2 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) |
| 32 |
|
iftrue |
⊢ ( 𝑥 = 2 → if ( 𝑥 = 2 , 𝐵 , 𝐶 ) = 𝐵 ) |
| 33 |
31 32
|
eqtrd |
⊢ ( 𝑥 = 2 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = 𝐵 ) |
| 34 |
24 33
|
eqeq12d |
⊢ ( 𝑥 = 2 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑥 = 3 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 3 ) ) |
| 36 |
|
1lt3 |
⊢ 1 < 3 |
| 37 |
25 36
|
gtneii |
⊢ 3 ≠ 1 |
| 38 |
|
neeq1 |
⊢ ( 𝑥 = 3 → ( 𝑥 ≠ 1 ↔ 3 ≠ 1 ) ) |
| 39 |
37 38
|
mpbiri |
⊢ ( 𝑥 = 3 → 𝑥 ≠ 1 ) |
| 40 |
39 30
|
syl |
⊢ ( 𝑥 = 3 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) |
| 41 |
|
2re |
⊢ 2 ∈ ℝ |
| 42 |
|
2lt3 |
⊢ 2 < 3 |
| 43 |
41 42
|
gtneii |
⊢ 3 ≠ 2 |
| 44 |
|
neeq1 |
⊢ ( 𝑥 = 3 → ( 𝑥 ≠ 2 ↔ 3 ≠ 2 ) ) |
| 45 |
43 44
|
mpbiri |
⊢ ( 𝑥 = 3 → 𝑥 ≠ 2 ) |
| 46 |
|
ifnefalse |
⊢ ( 𝑥 ≠ 2 → if ( 𝑥 = 2 , 𝐵 , 𝐶 ) = 𝐶 ) |
| 47 |
45 46
|
syl |
⊢ ( 𝑥 = 3 → if ( 𝑥 = 2 , 𝐵 , 𝐶 ) = 𝐶 ) |
| 48 |
40 47
|
eqtrd |
⊢ ( 𝑥 = 3 → if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) = 𝐶 ) |
| 49 |
35 48
|
eqeq12d |
⊢ ( 𝑥 = 3 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( 𝐹 ‘ 3 ) = 𝐶 ) ) |
| 50 |
18 19 20 23 34 49
|
raltp |
⊢ ( ∀ 𝑥 ∈ { 1 , 2 , 3 } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ∧ ( 𝐹 ‘ 3 ) = 𝐶 ) ) |
| 51 |
17 50
|
bitri |
⊢ ( ∀ 𝑥 ∈ ( 1 ... 3 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , if ( 𝑥 = 2 , 𝐵 , 𝐶 ) ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ∧ ( 𝐹 ‘ 3 ) = 𝐶 ) ) |