Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ≤ 𝑘 ↔ 𝑀 ≤ 𝑘 ) ) |
2 |
1
|
anbi1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛 ) ↔ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛 ) ) ) |
3 |
2
|
rabbidv |
⊢ ( 𝑚 = 𝑀 → { 𝑘 ∈ ℤ ∣ ( 𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛 ) } = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛 ) } ) |
4 |
|
breq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑘 ≤ 𝑛 ↔ 𝑘 ≤ 𝑁 ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛 ) ↔ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) ) ) |
6 |
5
|
rabbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛 ) } = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ) |
7 |
|
df-fz |
⊢ ... = ( 𝑚 ∈ ℤ , 𝑛 ∈ ℤ ↦ { 𝑘 ∈ ℤ ∣ ( 𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛 ) } ) |
8 |
|
zex |
⊢ ℤ ∈ V |
9 |
8
|
rabex |
⊢ { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ∈ V |
10 |
3 6 7 9
|
ovmpo |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = { 𝑘 ∈ ℤ ∣ ( 𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁 ) } ) |