Metamath Proof Explorer


Theorem fzval3

Description: Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzval3 ( 𝑁 ∈ ℤ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 peano2z ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ )
2 fzoval ( ( 𝑁 + 1 ) ∈ ℤ → ( 𝑀 ..^ ( 𝑁 + 1 ) ) = ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) )
3 1 2 syl ( 𝑁 ∈ ℤ → ( 𝑀 ..^ ( 𝑁 + 1 ) ) = ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) )
4 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
5 ax-1cn 1 ∈ ℂ
6 pncan ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
7 4 5 6 sylancl ( 𝑁 ∈ ℤ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
8 7 oveq2d ( 𝑁 ∈ ℤ → ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑁 ) )
9 3 8 eqtr2d ( 𝑁 ∈ ℤ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) )