Description: Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzval3 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ ) | |
| 2 | fzoval | ⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( 𝑀 ..^ ( 𝑁 + 1 ) ) = ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ ( 𝑁 + 1 ) ) = ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) ) |
| 4 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 8 | 7 | oveq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 9 | 3 8 | eqtr2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) |