| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 | 1 | jctr | ⊢ ( 𝐺  ∈  Grp  →  ( 𝐺  ∈  Grp  ∧  ∅  ∈  V ) ) | 
						
							| 3 |  | f0 | ⊢ ∅ : ∅ ⟶ ∅ | 
						
							| 4 |  | xp0 | ⊢ ( ( Base ‘ 𝐺 )  ×  ∅ )  =  ∅ | 
						
							| 5 | 4 | feq2i | ⊢ ( ∅ : ( ( Base ‘ 𝐺 )  ×  ∅ ) ⟶ ∅  ↔  ∅ : ∅ ⟶ ∅ ) | 
						
							| 6 | 3 5 | mpbir | ⊢ ∅ : ( ( Base ‘ 𝐺 )  ×  ∅ ) ⟶ ∅ | 
						
							| 7 |  | ral0 | ⊢ ∀ 𝑥  ∈  ∅ ( ( ( 0g ‘ 𝐺 ) ∅ 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∀ 𝑧  ∈  ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∅ 𝑥 )  =  ( 𝑦 ∅ ( 𝑧 ∅ 𝑥 ) ) ) | 
						
							| 8 | 6 7 | pm3.2i | ⊢ ( ∅ : ( ( Base ‘ 𝐺 )  ×  ∅ ) ⟶ ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( ( 0g ‘ 𝐺 ) ∅ 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∀ 𝑧  ∈  ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∅ 𝑥 )  =  ( 𝑦 ∅ ( 𝑧 ∅ 𝑥 ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 12 | 9 10 11 | isga | ⊢ ( ∅  ∈  ( 𝐺  GrpAct  ∅ )  ↔  ( ( 𝐺  ∈  Grp  ∧  ∅  ∈  V )  ∧  ( ∅ : ( ( Base ‘ 𝐺 )  ×  ∅ ) ⟶ ∅  ∧  ∀ 𝑥  ∈  ∅ ( ( ( 0g ‘ 𝐺 ) ∅ 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∀ 𝑧  ∈  ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∅ 𝑥 )  =  ( 𝑦 ∅ ( 𝑧 ∅ 𝑥 ) ) ) ) ) ) | 
						
							| 13 | 2 8 12 | sylanblrc | ⊢ ( 𝐺  ∈  Grp  →  ∅  ∈  ( 𝐺  GrpAct  ∅ ) ) |