Step |
Hyp |
Ref |
Expression |
1 |
|
galcan.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gacan.2 |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
3 |
|
gagrp |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) |
4 |
3
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → 𝐺 ∈ Grp ) |
5 |
|
simpr1 |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
8 |
1 6 7 2
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
9 |
4 5 8
|
syl2anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( 𝐴 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) |
10 |
9
|
oveq1d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝐴 ) ) ⊕ 𝐶 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝐶 ) ) |
11 |
|
simpl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
12 |
1 2
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
13 |
4 5 12
|
syl2anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
14 |
|
simpr3 |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → 𝐶 ∈ 𝑌 ) |
15 |
1 6
|
gaass |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝐴 ) ) ⊕ 𝐶 ) = ( 𝐴 ⊕ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) ) |
16 |
11 5 13 14 15
|
syl13anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝐴 ) ) ⊕ 𝐶 ) = ( 𝐴 ⊕ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) ) |
17 |
7
|
gagrpid |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐶 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐶 ) = 𝐶 ) |
18 |
11 14 17
|
syl2anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐶 ) = 𝐶 ) |
19 |
10 16 18
|
3eqtr3d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( 𝐴 ⊕ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) = 𝐶 ) |
20 |
19
|
eqeq2d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝐵 ) = ( 𝐴 ⊕ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) ↔ ( 𝐴 ⊕ 𝐵 ) = 𝐶 ) ) |
21 |
|
simpr2 |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → 𝐵 ∈ 𝑌 ) |
22 |
1
|
gaf |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
23 |
22
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
24 |
23 13 14
|
fovrnd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ∈ 𝑌 ) |
25 |
1
|
galcan |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝐵 ) = ( 𝐴 ⊕ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) ↔ 𝐵 = ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) ) |
26 |
11 5 21 24 25
|
syl13anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝐵 ) = ( 𝐴 ⊕ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) ↔ 𝐵 = ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) ) |
27 |
20 26
|
bitr3d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝐵 ) = 𝐶 ↔ 𝐵 = ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ) ) |
28 |
|
eqcom |
⊢ ( 𝐵 = ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) ↔ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) = 𝐵 ) |
29 |
27 28
|
bitrdi |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌 ) ) → ( ( 𝐴 ⊕ 𝐵 ) = 𝐶 ↔ ( ( 𝑁 ‘ 𝐴 ) ⊕ 𝐶 ) = 𝐵 ) ) |