Metamath Proof Explorer


Theorem gaf

Description: The mapping of the group action operation. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypothesis gaf.1 𝑋 = ( Base ‘ 𝐺 )
Assertion gaf ( ∈ ( 𝐺 GrpAct 𝑌 ) → : ( 𝑋 × 𝑌 ) ⟶ 𝑌 )

Proof

Step Hyp Ref Expression
1 gaf.1 𝑋 = ( Base ‘ 𝐺 )
2 eqid ( +g𝐺 ) = ( +g𝐺 )
3 eqid ( 0g𝐺 ) = ( 0g𝐺 )
4 1 2 3 isga ( ∈ ( 𝐺 GrpAct 𝑌 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ V ) ∧ ( : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥𝑌 ( ( ( 0g𝐺 ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑋𝑧𝑋 ( ( 𝑦 ( +g𝐺 ) 𝑧 ) 𝑥 ) = ( 𝑦 ( 𝑧 𝑥 ) ) ) ) ) )
5 4 simprbi ( ∈ ( 𝐺 GrpAct 𝑌 ) → ( : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥𝑌 ( ( ( 0g𝐺 ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑋𝑧𝑋 ( ( 𝑦 ( +g𝐺 ) 𝑧 ) 𝑥 ) = ( 𝑦 ( 𝑧 𝑥 ) ) ) ) )
6 5 simpld ( ∈ ( 𝐺 GrpAct 𝑌 ) → : ( 𝑋 × 𝑌 ) ⟶ 𝑌 )