| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gaf.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | isga | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ↔  ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  V )  ∧  (  ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑌 ( ( ( 0g ‘ 𝐺 )  ⊕  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ⊕  𝑥 )  =  ( 𝑦  ⊕  ( 𝑧  ⊕  𝑥 ) ) ) ) ) ) | 
						
							| 5 | 4 | simprbi | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  (  ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑌 ( ( ( 0g ‘ 𝐺 )  ⊕  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ⊕  𝑥 )  =  ( 𝑦  ⊕  ( 𝑧  ⊕  𝑥 ) ) ) ) ) | 
						
							| 6 | 5 | simpld | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) |