| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gaf.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 | 1 | gaf | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 3 |  | gagrp | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  𝐺  ∈  Grp ) | 
						
							| 4 | 3 | adantr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑌 )  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 6 | 1 5 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 7 | 4 6 | syl | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑌 )  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 8 |  | simpr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑌 )  →  𝑥  ∈  𝑌 ) | 
						
							| 9 | 5 | gagrpid | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑌 )  →  ( ( 0g ‘ 𝐺 )  ⊕  𝑥 )  =  𝑥 ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑌 )  →  𝑥  =  ( ( 0g ‘ 𝐺 )  ⊕  𝑥 ) ) | 
						
							| 11 |  | rspceov | ⊢ ( ( ( 0g ‘ 𝐺 )  ∈  𝑋  ∧  𝑥  ∈  𝑌  ∧  𝑥  =  ( ( 0g ‘ 𝐺 )  ⊕  𝑥 ) )  →  ∃ 𝑦  ∈  𝑋 ∃ 𝑧  ∈  𝑌 𝑥  =  ( 𝑦  ⊕  𝑧 ) ) | 
						
							| 12 | 7 8 10 11 | syl3anc | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑌 )  →  ∃ 𝑦  ∈  𝑋 ∃ 𝑧  ∈  𝑌 𝑥  =  ( 𝑦  ⊕  𝑧 ) ) | 
						
							| 13 | 12 | ralrimiva | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  ∀ 𝑥  ∈  𝑌 ∃ 𝑦  ∈  𝑋 ∃ 𝑧  ∈  𝑌 𝑥  =  ( 𝑦  ⊕  𝑧 ) ) | 
						
							| 14 |  | foov | ⊢ (  ⊕  : ( 𝑋  ×  𝑌 ) –onto→ 𝑌  ↔  (  ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑌 ∃ 𝑦  ∈  𝑋 ∃ 𝑧  ∈  𝑌 𝑥  =  ( 𝑦  ⊕  𝑧 ) ) ) | 
						
							| 15 | 2 13 14 | sylanbrc | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) –onto→ 𝑌 ) |