Step |
Hyp |
Ref |
Expression |
1 |
|
gaf.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
1
|
gaf |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
3 |
|
gagrp |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) |
4 |
3
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
1 5
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
7 |
4 6
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
8 |
|
simpr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑌 ) |
9 |
5
|
gagrpid |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) = 𝑥 ) |
10 |
9
|
eqcomd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 = ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) ) |
11 |
|
rspceov |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑥 = ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑋 ∃ 𝑧 ∈ 𝑌 𝑥 = ( 𝑦 ⊕ 𝑧 ) ) |
12 |
7 8 10 11
|
syl3anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑦 ∈ 𝑋 ∃ 𝑧 ∈ 𝑌 𝑥 = ( 𝑦 ⊕ 𝑧 ) ) |
13 |
12
|
ralrimiva |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ∃ 𝑦 ∈ 𝑋 ∃ 𝑧 ∈ 𝑌 𝑥 = ( 𝑦 ⊕ 𝑧 ) ) |
14 |
|
foov |
⊢ ( ⊕ : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ↔ ( ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ∃ 𝑦 ∈ 𝑋 ∃ 𝑧 ∈ 𝑌 𝑥 = ( 𝑦 ⊕ 𝑧 ) ) ) |
15 |
2 13 14
|
sylanbrc |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ) |