| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gaid.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | elex | ⊢ ( 𝑆  ∈  𝑉  →  𝑆  ∈  V ) | 
						
							| 3 | 2 | anim2i | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  →  ( 𝐺  ∈  Grp  ∧  𝑆  ∈  V ) ) | 
						
							| 4 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 5 | 1 4 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 7 |  | ovres | ⊢ ( ( ( 0g ‘ 𝐺 )  ∈  𝑋  ∧  𝑥  ∈  𝑆 )  →  ( ( 0g ‘ 𝐺 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( ( 0g ‘ 𝐺 ) 2nd  𝑥 ) ) | 
						
							| 8 |  | df-ov | ⊢ ( ( 0g ‘ 𝐺 ) 2nd  𝑥 )  =  ( 2nd  ‘ 〈 ( 0g ‘ 𝐺 ) ,  𝑥 〉 ) | 
						
							| 9 |  | fvex | ⊢ ( 0g ‘ 𝐺 )  ∈  V | 
						
							| 10 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 11 | 9 10 | op2nd | ⊢ ( 2nd  ‘ 〈 ( 0g ‘ 𝐺 ) ,  𝑥 〉 )  =  𝑥 | 
						
							| 12 | 8 11 | eqtri | ⊢ ( ( 0g ‘ 𝐺 ) 2nd  𝑥 )  =  𝑥 | 
						
							| 13 | 7 12 | eqtrdi | ⊢ ( ( ( 0g ‘ 𝐺 )  ∈  𝑋  ∧  𝑥  ∈  𝑆 )  →  ( ( 0g ‘ 𝐺 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 14 | 6 13 | sylan | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  ( ( 0g ‘ 𝐺 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 15 |  | simprl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 16 |  | simplr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  𝑥  ∈  𝑆 ) | 
						
							| 17 |  | ovres | ⊢ ( ( 𝑦  ∈  𝑋  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( 𝑦 2nd  𝑥 ) ) | 
						
							| 18 |  | df-ov | ⊢ ( 𝑦 2nd  𝑥 )  =  ( 2nd  ‘ 〈 𝑦 ,  𝑥 〉 ) | 
						
							| 19 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 20 | 19 10 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑦 ,  𝑥 〉 )  =  𝑥 | 
						
							| 21 | 18 20 | eqtri | ⊢ ( 𝑦 2nd  𝑥 )  =  𝑥 | 
						
							| 22 | 17 21 | eqtrdi | ⊢ ( ( 𝑦  ∈  𝑋  ∧  𝑥  ∈  𝑆 )  →  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 23 | 15 16 22 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 24 |  | simprr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 25 |  | ovres | ⊢ ( ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( 𝑧 2nd  𝑥 ) ) | 
						
							| 26 |  | df-ov | ⊢ ( 𝑧 2nd  𝑥 )  =  ( 2nd  ‘ 〈 𝑧 ,  𝑥 〉 ) | 
						
							| 27 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 28 | 27 10 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑧 ,  𝑥 〉 )  =  𝑥 | 
						
							| 29 | 26 28 | eqtri | ⊢ ( 𝑧 2nd  𝑥 )  =  𝑥 | 
						
							| 30 | 25 29 | eqtrdi | ⊢ ( ( 𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑆 )  →  ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 31 | 24 16 30 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 ) )  =  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 ) ) | 
						
							| 33 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 34 | 1 33 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑋 ) | 
						
							| 35 | 34 | 3expb | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑋 ) | 
						
							| 36 | 35 | ad4ant14 | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑋 ) | 
						
							| 37 |  | ovres | ⊢ ( ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑋  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd  𝑥 ) ) | 
						
							| 38 |  | df-ov | ⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd  𝑥 )  =  ( 2nd  ‘ 〈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ,  𝑥 〉 ) | 
						
							| 39 |  | ovex | ⊢ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  V | 
						
							| 40 | 39 10 | op2nd | ⊢ ( 2nd  ‘ 〈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ,  𝑥 〉 )  =  𝑥 | 
						
							| 41 | 38 40 | eqtri | ⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd  𝑥 )  =  𝑥 | 
						
							| 42 | 37 41 | eqtrdi | ⊢ ( ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑋  ∧  𝑥  ∈  𝑆 )  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 43 | 36 16 42 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥 ) | 
						
							| 44 | 23 32 43 | 3eqtr4rd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 ) ) ) | 
						
							| 45 | 44 | ralrimivva | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 ) ) ) | 
						
							| 46 | 14 45 | jca | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  ∧  𝑥  ∈  𝑆 )  →  ( ( ( 0g ‘ 𝐺 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 ) ) ) ) | 
						
							| 47 | 46 | ralrimiva | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  →  ∀ 𝑥  ∈  𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 ) ) ) ) | 
						
							| 48 |  | f2ndres | ⊢ ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) : ( 𝑋  ×  𝑆 ) ⟶ 𝑆 | 
						
							| 49 | 47 48 | jctil | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  →  ( ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) : ( 𝑋  ×  𝑆 ) ⟶ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 ) ) ) ) ) | 
						
							| 50 | 1 33 4 | isga | ⊢ ( ( 2nd   ↾  ( 𝑋  ×  𝑆 ) )  ∈  ( 𝐺  GrpAct  𝑆 )  ↔  ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  V )  ∧  ( ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) : ( 𝑋  ×  𝑆 ) ⟶ 𝑆  ∧  ∀ 𝑥  ∈  𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 )  =  ( 𝑦 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) ( 𝑧 ( 2nd   ↾  ( 𝑋  ×  𝑆 ) ) 𝑥 ) ) ) ) ) ) | 
						
							| 51 | 3 49 50 | sylanbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑆  ∈  𝑉 )  →  ( 2nd   ↾  ( 𝑋  ×  𝑆 ) )  ∈  ( 𝐺  GrpAct  𝑆 ) ) |