Step |
Hyp |
Ref |
Expression |
1 |
|
galactghm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
galactghm.h |
⊢ 𝐻 = ( SymGrp ‘ 𝑌 ) |
3 |
|
galactghm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
7 |
|
gagrp |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) |
8 |
|
gaset |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝑌 ∈ V ) |
9 |
2
|
symggrp |
⊢ ( 𝑌 ∈ V → 𝐻 ∈ Grp ) |
10 |
8 9
|
syl |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐻 ∈ Grp ) |
11 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) |
12 |
1 11
|
gapm |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) |
13 |
8
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ∈ V ) |
14 |
2 4
|
elsymgbas |
⊢ ( 𝑌 ∈ V → ( ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
15 |
13 14
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) ) |
16 |
12 15
|
mpbird |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) ∈ ( Base ‘ 𝐻 ) ) |
17 |
16 3
|
fmptd |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
18 |
|
df-3an |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ↔ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) ) |
19 |
1 5
|
gaass |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) = ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) |
20 |
18 19
|
sylan2br |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) = ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) |
21 |
20
|
anassrs |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) = ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) |
22 |
21
|
mpteq2dva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) → ( 𝑥 ⊕ 𝑦 ) = ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) |
24 |
23
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) ) |
25 |
7
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
26 |
|
simprl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
27 |
|
simprr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑤 ∈ 𝑋 ) |
28 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ∈ 𝑋 ) |
29 |
25 26 27 28
|
syl3anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ∈ 𝑋 ) |
30 |
8
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑌 ∈ V ) |
31 |
30
|
mptexd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) ∈ V ) |
32 |
3 24 29 31
|
fvmptd3 |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ⊕ 𝑦 ) ) ) |
33 |
17
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) |
34 |
33 26
|
ffvelrnd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) |
35 |
33 27
|
ffvelrnd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐻 ) ) |
36 |
2 4 6
|
symgov |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑧 ) ∘ ( 𝐹 ‘ 𝑤 ) ) ) |
37 |
34 35 36
|
syl2anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑧 ) ∘ ( 𝐹 ‘ 𝑤 ) ) ) |
38 |
1
|
gaf |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
40 |
27
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑤 ∈ 𝑋 ) |
41 |
|
simpr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
42 |
39 40 41
|
fovrnd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑤 ⊕ 𝑦 ) ∈ 𝑌 ) |
43 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ⊕ 𝑦 ) = ( 𝑤 ⊕ 𝑦 ) ) |
44 |
43
|
mpteq2dv |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑤 ⊕ 𝑦 ) ) ) |
45 |
30
|
mptexd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑤 ⊕ 𝑦 ) ) ∈ V ) |
46 |
3 44 27 45
|
fvmptd3 |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑤 ⊕ 𝑦 ) ) ) |
47 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊕ 𝑦 ) = ( 𝑧 ⊕ 𝑦 ) ) |
48 |
47
|
mpteq2dv |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 ⊕ 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑦 ) ) ) |
49 |
30
|
mptexd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑦 ) ) ∈ V ) |
50 |
3 48 26 49
|
fvmptd3 |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑦 ) ) ) |
51 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 ⊕ 𝑦 ) = ( 𝑧 ⊕ 𝑥 ) ) |
52 |
51
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑦 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑥 ) ) |
53 |
50 52
|
eqtrdi |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑥 ∈ 𝑌 ↦ ( 𝑧 ⊕ 𝑥 ) ) ) |
54 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑤 ⊕ 𝑦 ) → ( 𝑧 ⊕ 𝑥 ) = ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) |
55 |
42 46 53 54
|
fmptco |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∘ ( 𝐹 ‘ 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) ) |
56 |
37 55
|
eqtrd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑧 ⊕ ( 𝑤 ⊕ 𝑦 ) ) ) ) |
57 |
22 32 56
|
3eqtr4d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) ) |
58 |
1 4 5 6 7 10 17 57
|
isghmd |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |