| Step | Hyp | Ref | Expression | 
						
							| 1 |  | galactghm.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | galactghm.h | ⊢ 𝐻  =  ( SymGrp ‘ 𝑌 ) | 
						
							| 3 |  | galactghm.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 7 |  | gagrp | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  𝐺  ∈  Grp ) | 
						
							| 8 |  | gaset | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  𝑌  ∈  V ) | 
						
							| 9 | 2 | symggrp | ⊢ ( 𝑌  ∈  V  →  𝐻  ∈  Grp ) | 
						
							| 10 | 8 9 | syl | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  𝐻  ∈  Grp ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) ) | 
						
							| 12 | 1 11 | gapm | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) | 
						
							| 13 | 8 | adantr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  𝑌  ∈  V ) | 
						
							| 14 | 2 4 | elsymgbas | ⊢ ( 𝑌  ∈  V  →  ( ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) )  ∈  ( Base ‘ 𝐻 )  ↔  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) )  ∈  ( Base ‘ 𝐻 )  ↔  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) ) : 𝑌 –1-1-onto→ 𝑌 ) ) | 
						
							| 16 | 12 15 | mpbird | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 17 | 16 3 | fmptd | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 18 |  | df-3an | ⊢ ( ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋  ∧  𝑦  ∈  𝑌 )  ↔  ( ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 ) ) | 
						
							| 19 | 1 5 | gaass | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋  ∧  𝑦  ∈  𝑌 ) )  →  ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ⊕  𝑦 )  =  ( 𝑧  ⊕  ( 𝑤  ⊕  𝑦 ) ) ) | 
						
							| 20 | 18 19 | sylan2br | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 ) )  →  ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ⊕  𝑦 )  =  ( 𝑧  ⊕  ( 𝑤  ⊕  𝑦 ) ) ) | 
						
							| 21 | 20 | anassrs | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ⊕  𝑦 )  =  ( 𝑧  ⊕  ( 𝑤  ⊕  𝑦 ) ) ) | 
						
							| 22 | 21 | mpteq2dva | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑦  ∈  𝑌  ↦  ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ⊕  𝑦 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑧  ⊕  ( 𝑤  ⊕  𝑦 ) ) ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  →  ( 𝑥  ⊕  𝑦 )  =  ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ⊕  𝑦 ) ) | 
						
							| 24 | 23 | mpteq2dv | ⊢ ( 𝑥  =  ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ⊕  𝑦 ) ) ) | 
						
							| 25 | 7 | adantr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  𝐺  ∈  Grp ) | 
						
							| 26 |  | simprl | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 27 |  | simprr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  𝑤  ∈  𝑋 ) | 
						
							| 28 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ∈  𝑋 ) | 
						
							| 29 | 25 26 27 28 | syl3anc | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ∈  𝑋 ) | 
						
							| 30 | 8 | adantr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  𝑌  ∈  V ) | 
						
							| 31 | 30 | mptexd | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑦  ∈  𝑌  ↦  ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ⊕  𝑦 ) )  ∈  V ) | 
						
							| 32 | 3 24 29 31 | fvmptd3 | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 )  ⊕  𝑦 ) ) ) | 
						
							| 33 | 17 | adantr | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  𝐹 : 𝑋 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 34 | 33 26 | ffvelcdmd | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 35 | 33 27 | ffvelcdmd | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 36 | 2 4 6 | symgov | ⊢ ( ( ( 𝐹 ‘ 𝑧 )  ∈  ( Base ‘ 𝐻 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  ( Base ‘ 𝐻 ) )  →  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) )  =  ( ( 𝐹 ‘ 𝑧 )  ∘  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 37 | 34 35 36 | syl2anc | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) )  =  ( ( 𝐹 ‘ 𝑧 )  ∘  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 38 | 1 | gaf | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 40 | 27 | adantr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  𝑤  ∈  𝑋 ) | 
						
							| 41 |  | simpr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑌 ) | 
						
							| 42 | 39 40 41 | fovcdmd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  ∧  𝑦  ∈  𝑌 )  →  ( 𝑤  ⊕  𝑦 )  ∈  𝑌 ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  ⊕  𝑦 )  =  ( 𝑤  ⊕  𝑦 ) ) | 
						
							| 44 | 43 | mpteq2dv | ⊢ ( 𝑥  =  𝑤  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑤  ⊕  𝑦 ) ) ) | 
						
							| 45 | 30 | mptexd | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑤  ⊕  𝑦 ) )  ∈  V ) | 
						
							| 46 | 3 44 27 45 | fvmptd3 | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑤  ⊕  𝑦 ) ) ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ⊕  𝑦 )  =  ( 𝑧  ⊕  𝑦 ) ) | 
						
							| 48 | 47 | mpteq2dv | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥  ⊕  𝑦 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑧  ⊕  𝑦 ) ) ) | 
						
							| 49 | 30 | mptexd | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑧  ⊕  𝑦 ) )  ∈  V ) | 
						
							| 50 | 3 48 26 49 | fvmptd3 | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑧  ⊕  𝑦 ) ) ) | 
						
							| 51 |  | oveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑧  ⊕  𝑦 )  =  ( 𝑧  ⊕  𝑥 ) ) | 
						
							| 52 | 51 | cbvmptv | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑧  ⊕  𝑦 ) )  =  ( 𝑥  ∈  𝑌  ↦  ( 𝑧  ⊕  𝑥 ) ) | 
						
							| 53 | 50 52 | eqtrdi | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑥  ∈  𝑌  ↦  ( 𝑧  ⊕  𝑥 ) ) ) | 
						
							| 54 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑤  ⊕  𝑦 )  →  ( 𝑧  ⊕  𝑥 )  =  ( 𝑧  ⊕  ( 𝑤  ⊕  𝑦 ) ) ) | 
						
							| 55 | 42 46 53 54 | fmptco | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ∘  ( 𝐹 ‘ 𝑤 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑧  ⊕  ( 𝑤  ⊕  𝑦 ) ) ) ) | 
						
							| 56 | 37 55 | eqtrd | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑧  ⊕  ( 𝑤  ⊕  𝑦 ) ) ) ) | 
						
							| 57 | 22 32 56 | 3eqtr4d | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝐺 ) 𝑤 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 58 | 1 4 5 6 7 10 17 57 | isghmd | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) |