Step |
Hyp |
Ref |
Expression |
1 |
|
gaorb.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
2 |
|
gaorber.2 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
1
|
relopabiv |
⊢ Rel ∼ |
4 |
3
|
a1i |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → Rel ∼ ) |
5 |
|
simpr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝑢 ∼ 𝑣 ) |
6 |
1
|
gaorb |
⊢ ( 𝑢 ∼ 𝑣 ↔ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ) ) |
7 |
5 6
|
sylib |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ) ) |
8 |
7
|
simp2d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝑣 ∈ 𝑌 ) |
9 |
7
|
simp1d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝑢 ∈ 𝑌 ) |
10 |
7
|
simp3d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ) |
11 |
|
simpll |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
12 |
|
simpr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ℎ ∈ 𝑋 ) |
13 |
9
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → 𝑢 ∈ 𝑌 ) |
14 |
8
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → 𝑣 ∈ 𝑌 ) |
15 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
16 |
2 15
|
gacan |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ℎ ⊕ 𝑢 ) = 𝑣 ↔ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 ) ) |
17 |
11 12 13 14 16
|
syl13anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ( ( ℎ ⊕ 𝑢 ) = 𝑣 ↔ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 ) ) |
18 |
|
gagrp |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) |
19 |
18
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝐺 ∈ Grp ) |
20 |
2 15
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ℎ ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ℎ ) ∈ 𝑋 ) |
21 |
19 20
|
sylan |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ℎ ) ∈ 𝑋 ) |
22 |
|
oveq1 |
⊢ ( 𝑘 = ( ( invg ‘ 𝐺 ) ‘ ℎ ) → ( 𝑘 ⊕ 𝑣 ) = ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑘 = ( ( invg ‘ 𝐺 ) ‘ ℎ ) → ( ( 𝑘 ⊕ 𝑣 ) = 𝑢 ↔ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 ) ) |
24 |
23
|
rspcev |
⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 ) → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) |
25 |
24
|
ex |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ∈ 𝑋 → ( ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
26 |
21 25
|
syl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ℎ ) ⊕ 𝑣 ) = 𝑢 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
27 |
17 26
|
sylbid |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) ∧ ℎ ∈ 𝑋 ) → ( ( ℎ ⊕ 𝑢 ) = 𝑣 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
28 |
27
|
rexlimdva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
29 |
10 28
|
mpd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) |
30 |
1
|
gaorb |
⊢ ( 𝑣 ∼ 𝑢 ↔ ( 𝑣 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑢 ) ) |
31 |
8 9 29 30
|
syl3anbrc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∼ 𝑣 ) → 𝑣 ∼ 𝑢 ) |
32 |
9
|
adantrr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑢 ∈ 𝑌 ) |
33 |
|
simprr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑣 ∼ 𝑤 ) |
34 |
1
|
gaorb |
⊢ ( 𝑣 ∼ 𝑤 ↔ ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) |
35 |
33 34
|
sylib |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) |
36 |
35
|
simp2d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑤 ∈ 𝑌 ) |
37 |
10
|
adantrr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ) |
38 |
35
|
simp3d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) |
39 |
|
reeanv |
⊢ ( ∃ ℎ ∈ 𝑋 ∃ 𝑘 ∈ 𝑋 ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ↔ ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) |
40 |
18
|
ad2antrr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → 𝐺 ∈ Grp ) |
41 |
|
simprlr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → 𝑘 ∈ 𝑋 ) |
42 |
|
simprll |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ℎ ∈ 𝑋 ) |
43 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
44 |
2 43
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ) → ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ∈ 𝑋 ) |
45 |
40 41 42 44
|
syl3anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ∈ 𝑋 ) |
46 |
|
simpll |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
47 |
32
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → 𝑢 ∈ 𝑌 ) |
48 |
2 43
|
gaass |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ 𝑢 ∈ 𝑌 ) ) → ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = ( 𝑘 ⊕ ( ℎ ⊕ 𝑢 ) ) ) |
49 |
46 41 42 47 48
|
syl13anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = ( 𝑘 ⊕ ( ℎ ⊕ 𝑢 ) ) ) |
50 |
|
simprrl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( ℎ ⊕ 𝑢 ) = 𝑣 ) |
51 |
50
|
oveq2d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 ⊕ ( ℎ ⊕ 𝑢 ) ) = ( 𝑘 ⊕ 𝑣 ) ) |
52 |
|
simprrr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) |
53 |
49 51 52
|
3eqtrd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = 𝑤 ) |
54 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) → ( 𝑓 ⊕ 𝑢 ) = ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) ) |
55 |
54
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) → ( ( 𝑓 ⊕ 𝑢 ) = 𝑤 ↔ ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = 𝑤 ) ) |
56 |
55
|
rspcev |
⊢ ( ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ∈ 𝑋 ∧ ( ( 𝑘 ( +g ‘ 𝐺 ) ℎ ) ⊕ 𝑢 ) = 𝑤 ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) |
57 |
45 53 56
|
syl2anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ∧ ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) ) ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) |
58 |
57
|
expr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) ∧ ( ℎ ∈ 𝑋 ∧ 𝑘 ∈ 𝑋 ) ) → ( ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) ) |
59 |
58
|
rexlimdvva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ( ∃ ℎ ∈ 𝑋 ∃ 𝑘 ∈ 𝑋 ( ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) ) |
60 |
39 59
|
syl5bir |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ( ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑣 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑣 ) = 𝑤 ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) ) |
61 |
37 38 60
|
mp2and |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) |
62 |
1
|
gaorb |
⊢ ( 𝑢 ∼ 𝑤 ↔ ( 𝑢 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ∧ ∃ 𝑓 ∈ 𝑋 ( 𝑓 ⊕ 𝑢 ) = 𝑤 ) ) |
63 |
32 36 61 62
|
syl3anbrc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 ∼ 𝑣 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑢 ∼ 𝑤 ) |
64 |
18
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
65 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
66 |
2 65
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
67 |
64 66
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
68 |
65
|
gagrpid |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑢 ) = 𝑢 ) |
69 |
|
oveq1 |
⊢ ( ℎ = ( 0g ‘ 𝐺 ) → ( ℎ ⊕ 𝑢 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝑢 ) ) |
70 |
69
|
eqeq1d |
⊢ ( ℎ = ( 0g ‘ 𝐺 ) → ( ( ℎ ⊕ 𝑢 ) = 𝑢 ↔ ( ( 0g ‘ 𝐺 ) ⊕ 𝑢 ) = 𝑢 ) ) |
71 |
70
|
rspcev |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ ( ( 0g ‘ 𝐺 ) ⊕ 𝑢 ) = 𝑢 ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) |
72 |
67 68 71
|
syl2anc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 ∈ 𝑌 ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) |
73 |
72
|
ex |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢 ∈ 𝑌 → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ) |
74 |
73
|
pm4.71rd |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢 ∈ 𝑌 ↔ ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ∧ 𝑢 ∈ 𝑌 ) ) ) |
75 |
|
df-3an |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ↔ ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ) |
76 |
|
anidm |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ) ↔ 𝑢 ∈ 𝑌 ) |
77 |
76
|
anbi2ci |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ) ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ↔ ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ∧ 𝑢 ∈ 𝑌 ) ) |
78 |
75 77
|
bitri |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ↔ ( ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ∧ 𝑢 ∈ 𝑌 ) ) |
79 |
74 78
|
bitr4di |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢 ∈ 𝑌 ↔ ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ) ) |
80 |
1
|
gaorb |
⊢ ( 𝑢 ∼ 𝑢 ↔ ( 𝑢 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ) ) |
81 |
79 80
|
bitr4di |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢 ∈ 𝑌 ↔ 𝑢 ∼ 𝑢 ) ) |
82 |
4 31 63 81
|
iserd |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ∼ Er 𝑌 ) |