| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gapm.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gapm.2 | ⊢ 𝐹  =  ( 𝑥  ∈  𝑌  ↦  ( 𝐴  ⊕  𝑥 ) ) | 
						
							| 3 | 1 | gaf | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 5 |  | simplr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 6 |  | simpr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑌 )  →  𝑥  ∈  𝑌 ) | 
						
							| 7 | 4 5 6 | fovcdmd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑥  ∈  𝑌 )  →  ( 𝐴  ⊕  𝑥 )  ∈  𝑌 ) | 
						
							| 8 | 3 | ad2antrr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 9 |  | gagrp | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  𝐺  ∈  Grp ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  𝐺  ∈  Grp ) | 
						
							| 11 |  | simplr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 12 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 13 | 1 12 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 14 | 10 11 13 | syl2anc | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 15 |  | simpr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  𝑦  ∈  𝑌 ) | 
						
							| 16 | 8 14 15 | fovcdmd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ⊕  𝑦 )  ∈  𝑌 ) | 
						
							| 17 |  | simpll | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 ) )  →   ⊕   ∈  ( 𝐺  GrpAct  𝑌 ) ) | 
						
							| 18 |  | simplr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 19 |  | simprl | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 ) )  →  𝑥  ∈  𝑌 ) | 
						
							| 20 |  | simprr | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 ) )  →  𝑦  ∈  𝑌 ) | 
						
							| 21 | 1 12 | gacan | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 ) )  →  ( ( 𝐴  ⊕  𝑥 )  =  𝑦  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ⊕  𝑦 )  =  𝑥 ) ) | 
						
							| 22 | 17 18 19 20 21 | syl13anc | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 ) )  →  ( ( 𝐴  ⊕  𝑥 )  =  𝑦  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ⊕  𝑦 )  =  𝑥 ) ) | 
						
							| 23 | 22 | bicomd | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ⊕  𝑦 )  =  𝑥  ↔  ( 𝐴  ⊕  𝑥 )  =  𝑦 ) ) | 
						
							| 24 |  | eqcom | ⊢ ( 𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ⊕  𝑦 )  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ⊕  𝑦 )  =  𝑥 ) | 
						
							| 25 |  | eqcom | ⊢ ( 𝑦  =  ( 𝐴  ⊕  𝑥 )  ↔  ( 𝐴  ⊕  𝑥 )  =  𝑦 ) | 
						
							| 26 | 23 24 25 | 3bitr4g | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 ) )  →  ( 𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ⊕  𝑦 )  ↔  𝑦  =  ( 𝐴  ⊕  𝑥 ) ) ) | 
						
							| 27 | 2 7 16 26 | f1o2d | ⊢ ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝐴  ∈  𝑋 )  →  𝐹 : 𝑌 –1-1-onto→ 𝑌 ) |