Metamath Proof Explorer


Theorem gastacl

Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses gasta.1 𝑋 = ( Base ‘ 𝐺 )
gasta.2 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐴 ) = 𝐴 }
Assertion gastacl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 gasta.1 𝑋 = ( Base ‘ 𝐺 )
2 gasta.2 𝐻 = { 𝑢𝑋 ∣ ( 𝑢 𝐴 ) = 𝐴 }
3 2 ssrab3 𝐻𝑋
4 3 a1i ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐻𝑋 )
5 gagrp ( ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp )
6 5 adantr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐺 ∈ Grp )
7 eqid ( 0g𝐺 ) = ( 0g𝐺 )
8 1 7 grpidcl ( 𝐺 ∈ Grp → ( 0g𝐺 ) ∈ 𝑋 )
9 6 8 syl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( 0g𝐺 ) ∈ 𝑋 )
10 7 gagrpid ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( ( 0g𝐺 ) 𝐴 ) = 𝐴 )
11 oveq1 ( 𝑢 = ( 0g𝐺 ) → ( 𝑢 𝐴 ) = ( ( 0g𝐺 ) 𝐴 ) )
12 11 eqeq1d ( 𝑢 = ( 0g𝐺 ) → ( ( 𝑢 𝐴 ) = 𝐴 ↔ ( ( 0g𝐺 ) 𝐴 ) = 𝐴 ) )
13 12 2 elrab2 ( ( 0g𝐺 ) ∈ 𝐻 ↔ ( ( 0g𝐺 ) ∈ 𝑋 ∧ ( ( 0g𝐺 ) 𝐴 ) = 𝐴 ) )
14 9 10 13 sylanbrc ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( 0g𝐺 ) ∈ 𝐻 )
15 14 ne0d ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐻 ≠ ∅ )
16 simpll ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ∈ ( 𝐺 GrpAct 𝑌 ) )
17 16 5 syl ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → 𝐺 ∈ Grp )
18 simpr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → 𝑥𝐻 )
19 oveq1 ( 𝑢 = 𝑥 → ( 𝑢 𝐴 ) = ( 𝑥 𝐴 ) )
20 19 eqeq1d ( 𝑢 = 𝑥 → ( ( 𝑢 𝐴 ) = 𝐴 ↔ ( 𝑥 𝐴 ) = 𝐴 ) )
21 20 2 elrab2 ( 𝑥𝐻 ↔ ( 𝑥𝑋 ∧ ( 𝑥 𝐴 ) = 𝐴 ) )
22 18 21 sylib ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ( 𝑥𝑋 ∧ ( 𝑥 𝐴 ) = 𝐴 ) )
23 22 simpld ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → 𝑥𝑋 )
24 23 adantrr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → 𝑥𝑋 )
25 simprr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → 𝑦𝐻 )
26 oveq1 ( 𝑢 = 𝑦 → ( 𝑢 𝐴 ) = ( 𝑦 𝐴 ) )
27 26 eqeq1d ( 𝑢 = 𝑦 → ( ( 𝑢 𝐴 ) = 𝐴 ↔ ( 𝑦 𝐴 ) = 𝐴 ) )
28 27 2 elrab2 ( 𝑦𝐻 ↔ ( 𝑦𝑋 ∧ ( 𝑦 𝐴 ) = 𝐴 ) )
29 25 28 sylib ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ( 𝑦𝑋 ∧ ( 𝑦 𝐴 ) = 𝐴 ) )
30 29 simpld ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → 𝑦𝑋 )
31 eqid ( +g𝐺 ) = ( +g𝐺 )
32 1 31 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝑋 )
33 17 24 30 32 syl3anc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝑋 )
34 simplr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → 𝐴𝑌 )
35 1 31 gaass ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑥𝑋𝑦𝑋𝐴𝑌 ) ) → ( ( 𝑥 ( +g𝐺 ) 𝑦 ) 𝐴 ) = ( 𝑥 ( 𝑦 𝐴 ) ) )
36 16 24 30 34 35 syl13anc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ( ( 𝑥 ( +g𝐺 ) 𝑦 ) 𝐴 ) = ( 𝑥 ( 𝑦 𝐴 ) ) )
37 29 simprd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ( 𝑦 𝐴 ) = 𝐴 )
38 37 oveq2d ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ( 𝑥 ( 𝑦 𝐴 ) ) = ( 𝑥 𝐴 ) )
39 22 simprd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ( 𝑥 𝐴 ) = 𝐴 )
40 39 adantrr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ( 𝑥 𝐴 ) = 𝐴 )
41 36 38 40 3eqtrd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ( ( 𝑥 ( +g𝐺 ) 𝑦 ) 𝐴 ) = 𝐴 )
42 oveq1 ( 𝑢 = ( 𝑥 ( +g𝐺 ) 𝑦 ) → ( 𝑢 𝐴 ) = ( ( 𝑥 ( +g𝐺 ) 𝑦 ) 𝐴 ) )
43 42 eqeq1d ( 𝑢 = ( 𝑥 ( +g𝐺 ) 𝑦 ) → ( ( 𝑢 𝐴 ) = 𝐴 ↔ ( ( 𝑥 ( +g𝐺 ) 𝑦 ) 𝐴 ) = 𝐴 ) )
44 43 2 elrab2 ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐻 ↔ ( ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝑋 ∧ ( ( 𝑥 ( +g𝐺 ) 𝑦 ) 𝐴 ) = 𝐴 ) )
45 33 41 44 sylanbrc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ ( 𝑥𝐻𝑦𝐻 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐻 )
46 45 anassrs ( ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) ∧ 𝑦𝐻 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐻 )
47 46 ralrimiva ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ∀ 𝑦𝐻 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐻 )
48 simpll ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ∈ ( 𝐺 GrpAct 𝑌 ) )
49 48 5 syl ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → 𝐺 ∈ Grp )
50 eqid ( invg𝐺 ) = ( invg𝐺 )
51 1 50 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝑋 )
52 49 23 51 syl2anc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝑋 )
53 simplr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → 𝐴𝑌 )
54 1 50 gacan ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑥𝑋𝐴𝑌𝐴𝑌 ) ) → ( ( 𝑥 𝐴 ) = 𝐴 ↔ ( ( ( invg𝐺 ) ‘ 𝑥 ) 𝐴 ) = 𝐴 ) )
55 48 23 53 53 54 syl13anc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ( ( 𝑥 𝐴 ) = 𝐴 ↔ ( ( ( invg𝐺 ) ‘ 𝑥 ) 𝐴 ) = 𝐴 ) )
56 39 55 mpbid ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ( ( ( invg𝐺 ) ‘ 𝑥 ) 𝐴 ) = 𝐴 )
57 oveq1 ( 𝑢 = ( ( invg𝐺 ) ‘ 𝑥 ) → ( 𝑢 𝐴 ) = ( ( ( invg𝐺 ) ‘ 𝑥 ) 𝐴 ) )
58 57 eqeq1d ( 𝑢 = ( ( invg𝐺 ) ‘ 𝑥 ) → ( ( 𝑢 𝐴 ) = 𝐴 ↔ ( ( ( invg𝐺 ) ‘ 𝑥 ) 𝐴 ) = 𝐴 ) )
59 58 2 elrab2 ( ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑥 ) 𝐴 ) = 𝐴 ) )
60 52 56 59 sylanbrc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝐻 )
61 47 60 jca ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) ∧ 𝑥𝐻 ) → ( ∀ 𝑦𝐻 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) )
62 61 ralrimiva ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ∀ 𝑥𝐻 ( ∀ 𝑦𝐻 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) )
63 1 31 50 issubg2 ( 𝐺 ∈ Grp → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐻𝑋𝐻 ≠ ∅ ∧ ∀ 𝑥𝐻 ( ∀ 𝑦𝐻 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) ) )
64 6 63 syl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐻𝑋𝐻 ≠ ∅ ∧ ∀ 𝑥𝐻 ( ∀ 𝑦𝐻 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) ) )
65 4 15 62 64 mpbir3and ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )