Step |
Hyp |
Ref |
Expression |
1 |
|
gasta.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gasta.2 |
⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } |
3 |
2
|
ssrab3 |
⊢ 𝐻 ⊆ 𝑋 |
4 |
3
|
a1i |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ⊆ 𝑋 ) |
5 |
|
gagrp |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) |
6 |
5
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
8 |
1 7
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
9 |
6 8
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
10 |
7
|
gagrpid |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) |
11 |
|
oveq1 |
⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) ) |
13 |
12 2
|
elrab2 |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝐻 ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) ) |
14 |
9 10 13
|
sylanbrc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
15 |
14
|
ne0d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ≠ ∅ ) |
16 |
|
simpll |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
17 |
16 5
|
syl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝐺 ∈ Grp ) |
18 |
|
simpr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) |
19 |
|
oveq1 |
⊢ ( 𝑢 = 𝑥 → ( 𝑢 ⊕ 𝐴 ) = ( 𝑥 ⊕ 𝐴 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
21 |
20 2
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
22 |
18 21
|
sylib |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
23 |
22
|
simpld |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ 𝑋 ) |
24 |
23
|
adantrr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑥 ∈ 𝑋 ) |
25 |
|
simprr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑦 ∈ 𝐻 ) |
26 |
|
oveq1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 ⊕ 𝐴 ) = ( 𝑦 ⊕ 𝐴 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
28 |
27 2
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐻 ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
29 |
25 28
|
sylib |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
30 |
29
|
simpld |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑦 ∈ 𝑋 ) |
31 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
32 |
1 31
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
33 |
17 24 30 32
|
syl3anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
34 |
|
simplr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝐴 ∈ 𝑌 ) |
35 |
1 31
|
gaass |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) ) |
36 |
16 24 30 34 35
|
syl13anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) ) |
37 |
29
|
simprd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) |
38 |
37
|
oveq2d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) = ( 𝑥 ⊕ 𝐴 ) ) |
39 |
22
|
simprd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) |
40 |
39
|
adantrr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) |
41 |
36 38 40
|
3eqtrd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) |
42 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) ) |
43 |
42
|
eqeq1d |
⊢ ( 𝑢 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) ) |
44 |
43 2
|
elrab2 |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) ) |
45 |
33 41 44
|
sylanbrc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
46 |
45
|
anassrs |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
47 |
46
|
ralrimiva |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
48 |
|
simpll |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
49 |
48 5
|
syl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |
50 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
51 |
1 50
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
52 |
49 23 51
|
syl2anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
53 |
|
simplr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝐴 ∈ 𝑌 ) |
54 |
1 50
|
gacan |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ∧ 𝐴 ∈ 𝑌 ) ) → ( ( 𝑥 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
55 |
48 23 53 53 54
|
syl13anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑥 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
56 |
39 55
|
mpbid |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) |
57 |
|
oveq1 |
⊢ ( 𝑢 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) ) |
58 |
57
|
eqeq1d |
⊢ ( 𝑢 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
59 |
58 2
|
elrab2 |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
60 |
52 56 59
|
sylanbrc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) |
61 |
47 60
|
jca |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
62 |
61
|
ralrimiva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
63 |
1 31 50
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) ) ) |
64 |
6 63
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) ) ) |
65 |
4 15 62 64
|
mpbir3and |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |