| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gasta.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
gasta.2 |
⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } |
| 3 |
2
|
ssrab3 |
⊢ 𝐻 ⊆ 𝑋 |
| 4 |
3
|
a1i |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ⊆ 𝑋 ) |
| 5 |
|
gagrp |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) |
| 6 |
5
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 8 |
1 7
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 9 |
6 8
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 10 |
7
|
gagrpid |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) |
| 11 |
|
oveq1 |
⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑢 = ( 0g ‘ 𝐺 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 13 |
12 2
|
elrab2 |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝐻 ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ ( ( 0g ‘ 𝐺 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 14 |
9 10 13
|
sylanbrc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
| 15 |
14
|
ne0d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ≠ ∅ ) |
| 16 |
|
simpll |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
| 17 |
16 5
|
syl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝐺 ∈ Grp ) |
| 18 |
|
simpr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) |
| 19 |
|
oveq1 |
⊢ ( 𝑢 = 𝑥 → ( 𝑢 ⊕ 𝐴 ) = ( 𝑥 ⊕ 𝐴 ) ) |
| 20 |
19
|
eqeq1d |
⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
| 21 |
20 2
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
| 22 |
18 21
|
sylib |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) ) |
| 23 |
22
|
simpld |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ 𝑋 ) |
| 24 |
23
|
adantrr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑥 ∈ 𝑋 ) |
| 25 |
|
simprr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑦 ∈ 𝐻 ) |
| 26 |
|
oveq1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 ⊕ 𝐴 ) = ( 𝑦 ⊕ 𝐴 ) ) |
| 27 |
26
|
eqeq1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
| 28 |
27 2
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐻 ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
| 29 |
25 28
|
sylib |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) ) |
| 30 |
29
|
simpld |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝑦 ∈ 𝑋 ) |
| 31 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 32 |
1 31
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 33 |
17 24 30 32
|
syl3anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 34 |
|
simplr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → 𝐴 ∈ 𝑌 ) |
| 35 |
1 31
|
gaass |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) ) |
| 36 |
16 24 30 34 35
|
syl13anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) ) |
| 37 |
29
|
simprd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑦 ⊕ 𝐴 ) = 𝐴 ) |
| 38 |
37
|
oveq2d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ⊕ ( 𝑦 ⊕ 𝐴 ) ) = ( 𝑥 ⊕ 𝐴 ) ) |
| 39 |
22
|
simprd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) |
| 40 |
39
|
adantrr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ⊕ 𝐴 ) = 𝐴 ) |
| 41 |
36 38 40
|
3eqtrd |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) |
| 42 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) ) |
| 43 |
42
|
eqeq1d |
⊢ ( 𝑢 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 44 |
43 2
|
elrab2 |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 45 |
33 41 44
|
sylanbrc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
| 46 |
45
|
anassrs |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
| 47 |
46
|
ralrimiva |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ) |
| 48 |
|
simpll |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
| 49 |
48 5
|
syl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |
| 50 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 51 |
1 50
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
| 52 |
49 23 51
|
syl2anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
| 53 |
|
simplr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → 𝐴 ∈ 𝑌 ) |
| 54 |
1 50
|
gacan |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ∧ 𝐴 ∈ 𝑌 ) ) → ( ( 𝑥 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 55 |
48 23 53 53 54
|
syl13anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( 𝑥 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 56 |
39 55
|
mpbid |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) |
| 57 |
|
oveq1 |
⊢ ( 𝑢 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) ) |
| 58 |
57
|
eqeq1d |
⊢ ( 𝑢 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 59 |
58 2
|
elrab2 |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 60 |
52 56 59
|
sylanbrc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 61 |
47 60
|
jca |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝐻 ) → ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
| 62 |
61
|
ralrimiva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
| 63 |
1 31 50
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) ) ) |
| 64 |
6 63
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐻 ( ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐻 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐻 ) ) ) ) |
| 65 |
4 15 62 64
|
mpbir3and |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |