Description: Auxiliary lemma 1 for gausslemma2d . (Contributed by AV, 9-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | gausslemma2dlem0a.p | ⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) | |
Assertion | gausslemma2dlem0a | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0a.p | ⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) | |
2 | nnoddn2prm | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) ) | |
3 | simpl | ⊢ ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → 𝑃 ∈ ℕ ) | |
4 | 1 2 3 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |