Metamath Proof Explorer


Theorem gausslemma2dlem0a

Description: Auxiliary lemma 1 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypothesis gausslemma2dlem0a.p ( 𝜑𝑃 ∈ ( ℙ ∖ { 2 } ) )
Assertion gausslemma2dlem0a ( 𝜑𝑃 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0a.p ( 𝜑𝑃 ∈ ( ℙ ∖ { 2 } ) )
2 nnoddn2prm ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) )
3 simpl ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → 𝑃 ∈ ℕ )
4 1 2 3 3syl ( 𝜑𝑃 ∈ ℕ )