Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2dlem0a.p |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
2 |
|
gausslemma2dlem0b.h |
⊢ 𝐻 = ( ( 𝑃 − 1 ) / 2 ) |
3 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
4 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
6 |
|
nnoddn2prm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) ) |
7 |
|
nnoddm1d2 |
⊢ ( 𝑃 ∈ ℕ → ( ¬ 2 ∥ 𝑃 ↔ ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ ) |
9 |
8
|
nnnn0d |
⊢ ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 ) |
10 |
6 9
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 ) |
11 |
5 10
|
jca |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 ) ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 ) ) |
13 |
|
nno |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
15 |
2 14
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ ℕ ) |