Metamath Proof Explorer


Theorem gausslemma2dlem0b

Description: Auxiliary lemma 2 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0a.p ( 𝜑𝑃 ∈ ( ℙ ∖ { 2 } ) )
gausslemma2dlem0b.h 𝐻 = ( ( 𝑃 − 1 ) / 2 )
Assertion gausslemma2dlem0b ( 𝜑𝐻 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0a.p ( 𝜑𝑃 ∈ ( ℙ ∖ { 2 } ) )
2 gausslemma2dlem0b.h 𝐻 = ( ( 𝑃 − 1 ) / 2 )
3 eldifi ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ )
4 prmuz2 ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ ‘ 2 ) )
5 3 4 syl ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ ‘ 2 ) )
6 nnoddn2prm ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) )
7 nnoddm1d2 ( 𝑃 ∈ ℕ → ( ¬ 2 ∥ 𝑃 ↔ ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ ) )
8 7 biimpa ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ )
9 8 nnnn0d ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 )
10 6 9 syl ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 )
11 5 10 jca ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 ) )
12 1 11 syl ( 𝜑 → ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 ) )
13 nno ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ ( ( 𝑃 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ )
14 12 13 syl ( 𝜑 → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ )
15 2 14 eqeltrid ( 𝜑𝐻 ∈ ℕ )