Description: Auxiliary lemma 7 for gausslemma2d . (Contributed by AV, 9-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gausslemma2dlem0.p | ⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) | |
| gausslemma2dlem0.m | ⊢ 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) ) | ||
| gausslemma2dlem0.h | ⊢ 𝐻 = ( ( 𝑃 − 1 ) / 2 ) | ||
| Assertion | gausslemma2dlem0g | ⊢ ( 𝜑 → 𝑀 ≤ 𝐻 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gausslemma2dlem0.p | ⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) | |
| 2 | gausslemma2dlem0.m | ⊢ 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) ) | |
| 3 | gausslemma2dlem0.h | ⊢ 𝐻 = ( ( 𝑃 − 1 ) / 2 ) | |
| 4 | 1 | gausslemma2dlem0a | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) | 
| 5 | fldiv4lem1div2 | ⊢ ( 𝑃 ∈ ℕ → ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) | 
| 7 | 6 2 3 | 3brtr4g | ⊢ ( 𝜑 → 𝑀 ≤ 𝐻 ) |