Description: Auxiliary lemma 8 for gausslemma2d . (Contributed by AV, 9-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gausslemma2dlem0.p | ⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) | |
gausslemma2dlem0.m | ⊢ 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) ) | ||
gausslemma2dlem0.h | ⊢ 𝐻 = ( ( 𝑃 − 1 ) / 2 ) | ||
gausslemma2dlem0.n | ⊢ 𝑁 = ( 𝐻 − 𝑀 ) | ||
Assertion | gausslemma2dlem0h | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.p | ⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) | |
2 | gausslemma2dlem0.m | ⊢ 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) ) | |
3 | gausslemma2dlem0.h | ⊢ 𝐻 = ( ( 𝑃 − 1 ) / 2 ) | |
4 | gausslemma2dlem0.n | ⊢ 𝑁 = ( 𝐻 − 𝑀 ) | |
5 | 1 3 | gausslemma2dlem0b | ⊢ ( 𝜑 → 𝐻 ∈ ℕ ) |
6 | 5 | nnzd | ⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
7 | 1 2 | gausslemma2dlem0d | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
8 | 7 | nn0zd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
9 | 6 8 | zsubcld | ⊢ ( 𝜑 → ( 𝐻 − 𝑀 ) ∈ ℤ ) |
10 | 1 2 3 | gausslemma2dlem0g | ⊢ ( 𝜑 → 𝑀 ≤ 𝐻 ) |
11 | 5 | nnred | ⊢ ( 𝜑 → 𝐻 ∈ ℝ ) |
12 | 7 | nn0red | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
13 | 11 12 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝐻 − 𝑀 ) ↔ 𝑀 ≤ 𝐻 ) ) |
14 | 10 13 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( 𝐻 − 𝑀 ) ) |
15 | elnn0z | ⊢ ( ( 𝐻 − 𝑀 ) ∈ ℕ0 ↔ ( ( 𝐻 − 𝑀 ) ∈ ℤ ∧ 0 ≤ ( 𝐻 − 𝑀 ) ) ) | |
16 | 9 14 15 | sylanbrc | ⊢ ( 𝜑 → ( 𝐻 − 𝑀 ) ∈ ℕ0 ) |
17 | 4 16 | eqeltrid | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |