| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | gausslemma2d.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 1 ... 𝐻 )  ↦  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m | ⊢ 𝑀  =  ( ⌊ ‘ ( 𝑃  /  4 ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑥  =  𝑘  →  ( 𝑥  ·  2 )  =  ( 𝑘  ·  2 ) ) | 
						
							| 6 | 5 | breq1d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ↔  ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 7 | 5 | oveq2d | ⊢ ( 𝑥  =  𝑘  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) | 
						
							| 8 | 6 5 7 | ifbieq12d | ⊢ ( 𝑥  =  𝑘  →  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  =  if ( ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑘  ·  2 ) ,  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  ∧  𝑥  =  𝑘 )  →  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  =  if ( ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑘  ·  2 ) ,  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 10 | 1 | gausslemma2dlem0a | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 11 |  | elfz2 | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  ↔  ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝐻  ∈  ℤ  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑘  ∧  𝑘  ≤  𝐻 ) ) ) | 
						
							| 12 | 4 | oveq1i | ⊢ ( 𝑀  +  1 )  =  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 ) | 
						
							| 13 | 12 | breq1i | ⊢ ( ( 𝑀  +  1 )  ≤  𝑘  ↔  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘 ) | 
						
							| 14 |  | nnre | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ ) | 
						
							| 15 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  4  ∈  ℝ ) | 
						
							| 17 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  4  ≠  0 ) | 
						
							| 19 | 14 16 18 | redivcld | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  /  4 )  ∈  ℝ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( 𝑃  /  4 )  ∈  ℝ ) | 
						
							| 21 |  | fllelt | ⊢ ( ( 𝑃  /  4 )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( 𝑃  /  4 )  ∧  ( 𝑃  /  4 )  <  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 ) ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( 𝑃  /  4 )  ∧  ( 𝑃  /  4 )  <  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 ) ) ) | 
						
							| 23 | 19 | flcld | ⊢ ( 𝑃  ∈  ℕ  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℤ ) | 
						
							| 24 | 23 | zred | ⊢ ( 𝑃  ∈  ℕ  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℝ ) | 
						
							| 25 |  | peano2re | ⊢ ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ∈  ℝ ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝑃  ∈  ℕ  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ∈  ℝ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ∈  ℝ ) | 
						
							| 28 |  | zre | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  𝑘  ∈  ℝ ) | 
						
							| 30 |  | ltleletr | ⊢ ( ( ( 𝑃  /  4 )  ∈  ℝ  ∧  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( ( ( 𝑃  /  4 )  <  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ∧  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘 )  →  ( 𝑃  /  4 )  ≤  𝑘 ) ) | 
						
							| 31 | 20 27 29 30 | syl3anc | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( ( 𝑃  /  4 )  <  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ∧  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘 )  →  ( 𝑃  /  4 )  ≤  𝑘 ) ) | 
						
							| 32 | 31 | expd | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( 𝑃  /  4 )  <  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  →  ( ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘  →  ( 𝑃  /  4 )  ≤  𝑘 ) ) ) | 
						
							| 33 | 32 | adantld | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( 𝑃  /  4 )  ∧  ( 𝑃  /  4 )  <  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 ) )  →  ( ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘  →  ( 𝑃  /  4 )  ≤  𝑘 ) ) ) | 
						
							| 34 | 22 33 | mpd | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘  →  ( 𝑃  /  4 )  ≤  𝑘 ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  ∧  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘 )  →  ( 𝑃  /  4 )  ≤  𝑘 ) | 
						
							| 36 | 14 | rehalfcld | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 38 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 39 | 38 | a1i | ⊢ ( 𝑘  ∈  ℤ  →  2  ∈  ℝ ) | 
						
							| 40 | 28 39 | remulcld | ⊢ ( 𝑘  ∈  ℤ  →  ( 𝑘  ·  2 )  ∈  ℝ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( 𝑘  ·  2 )  ∈  ℝ ) | 
						
							| 42 |  | 2pos | ⊢ 0  <  2 | 
						
							| 43 | 38 42 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 45 |  | lediv1 | ⊢ ( ( ( 𝑃  /  2 )  ∈  ℝ  ∧  ( 𝑘  ·  2 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 )  ↔  ( ( 𝑃  /  2 )  /  2 )  ≤  ( ( 𝑘  ·  2 )  /  2 ) ) ) | 
						
							| 46 | 37 41 44 45 | syl3anc | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 )  ↔  ( ( 𝑃  /  2 )  /  2 )  ≤  ( ( 𝑘  ·  2 )  /  2 ) ) ) | 
						
							| 47 |  | nncn | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℂ ) | 
						
							| 48 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 49 | 48 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 50 |  | divdiv1 | ⊢ ( ( 𝑃  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( 𝑃  /  2 )  /  2 )  =  ( 𝑃  /  ( 2  ·  2 ) ) ) | 
						
							| 51 | 47 49 49 50 | syl3anc | ⊢ ( 𝑃  ∈  ℕ  →  ( ( 𝑃  /  2 )  /  2 )  =  ( 𝑃  /  ( 2  ·  2 ) ) ) | 
						
							| 52 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 53 | 52 | oveq2i | ⊢ ( 𝑃  /  ( 2  ·  2 ) )  =  ( 𝑃  /  4 ) | 
						
							| 54 | 51 53 | eqtrdi | ⊢ ( 𝑃  ∈  ℕ  →  ( ( 𝑃  /  2 )  /  2 )  =  ( 𝑃  /  4 ) ) | 
						
							| 55 |  | zcn | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℂ ) | 
						
							| 56 |  | 2cnd | ⊢ ( 𝑘  ∈  ℤ  →  2  ∈  ℂ ) | 
						
							| 57 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 58 | 57 | a1i | ⊢ ( 𝑘  ∈  ℤ  →  2  ≠  0 ) | 
						
							| 59 | 55 56 58 | divcan4d | ⊢ ( 𝑘  ∈  ℤ  →  ( ( 𝑘  ·  2 )  /  2 )  =  𝑘 ) | 
						
							| 60 | 54 59 | breqan12rd | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( ( 𝑃  /  2 )  /  2 )  ≤  ( ( 𝑘  ·  2 )  /  2 )  ↔  ( 𝑃  /  4 )  ≤  𝑘 ) ) | 
						
							| 61 | 46 60 | bitrd | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 )  ↔  ( 𝑃  /  4 )  ≤  𝑘 ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  ∧  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘 )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 )  ↔  ( 𝑃  /  4 )  ≤  𝑘 ) ) | 
						
							| 63 | 35 62 | mpbird | ⊢ ( ( ( 𝑘  ∈  ℤ  ∧  𝑃  ∈  ℕ )  ∧  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘 )  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) | 
						
							| 64 | 63 | exp31 | ⊢ ( 𝑘  ∈  ℤ  →  ( 𝑃  ∈  ℕ  →  ( ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 65 | 64 | com23 | ⊢ ( 𝑘  ∈  ℤ  →  ( ( ( ⌊ ‘ ( 𝑃  /  4 ) )  +  1 )  ≤  𝑘  →  ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 66 | 13 65 | biimtrid | ⊢ ( 𝑘  ∈  ℤ  →  ( ( 𝑀  +  1 )  ≤  𝑘  →  ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 67 | 66 | 3ad2ant3 | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝐻  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑀  +  1 )  ≤  𝑘  →  ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 68 | 67 | com12 | ⊢ ( ( 𝑀  +  1 )  ≤  𝑘  →  ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝐻  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( 𝑀  +  1 )  ≤  𝑘  ∧  𝑘  ≤  𝐻 )  →  ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝐻  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 70 | 69 | impcom | ⊢ ( ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝐻  ∈  ℤ  ∧  𝑘  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑘  ∧  𝑘  ≤  𝐻 ) )  →  ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) ) | 
						
							| 71 | 11 70 | sylbi | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  ( 𝑃  ∈  ℕ  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) ) | 
						
							| 72 | 71 | impcom | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 ) ) | 
						
							| 73 |  | elfzelz | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  𝑘  ∈  ℤ ) | 
						
							| 74 | 73 | zred | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  𝑘  ∈  ℝ ) | 
						
							| 75 | 38 | a1i | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  2  ∈  ℝ ) | 
						
							| 76 | 74 75 | remulcld | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  ( 𝑘  ·  2 )  ∈  ℝ ) | 
						
							| 77 |  | lenlt | ⊢ ( ( ( 𝑃  /  2 )  ∈  ℝ  ∧  ( 𝑘  ·  2 )  ∈  ℝ )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 )  ↔  ¬  ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 78 | 36 76 77 | syl2an | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( ( 𝑃  /  2 )  ≤  ( 𝑘  ·  2 )  ↔  ¬  ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 79 | 72 78 | mpbid | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ¬  ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ) | 
						
							| 80 | 10 79 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ¬  ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  ∧  𝑥  =  𝑘 )  →  ¬  ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ) | 
						
							| 82 | 81 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  ∧  𝑥  =  𝑘 )  →  if ( ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑘  ·  2 ) ,  ( 𝑃  −  ( 𝑘  ·  2 ) ) )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) | 
						
							| 83 | 9 82 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  ∧  𝑥  =  𝑘 )  →  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) | 
						
							| 84 | 1 4 | gausslemma2dlem0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 85 |  | nn0p1nn | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 86 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 87 | 85 86 | eleqtrdi | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 88 | 84 87 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 89 |  | fzss1 | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 𝑀  +  1 ) ... 𝐻 )  ⊆  ( 1 ... 𝐻 ) ) | 
						
							| 90 | 88 89 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 ) ... 𝐻 )  ⊆  ( 1 ... 𝐻 ) ) | 
						
							| 91 | 90 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  𝑘  ∈  ( 1 ... 𝐻 ) ) | 
						
							| 92 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( 𝑃  −  ( 𝑘  ·  2 ) )  ∈  V ) | 
						
							| 93 | 3 83 91 92 | fvmptd2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) | 
						
							| 94 | 93 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) |