| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | gausslemma2d.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 1 ... 𝐻 )  ↦  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m | ⊢ 𝑀  =  ( ⌊ ‘ ( 𝑃  /  4 ) ) | 
						
							| 5 | 1 2 3 | gausslemma2dlem1 | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 6 |  | eldif | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  ∈  { 2 } ) ) | 
						
							| 7 |  | prm23ge5 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑃  =  2  →  ( 𝑃  ∈  { 2 }  ↔  2  ∈  { 2 } ) ) | 
						
							| 9 | 8 | notbid | ⊢ ( 𝑃  =  2  →  ( ¬  𝑃  ∈  { 2 }  ↔  ¬  2  ∈  { 2 } ) ) | 
						
							| 10 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 11 | 10 | snid | ⊢ 2  ∈  { 2 } | 
						
							| 12 | 11 | 2a1i | ⊢ ( 𝑃  =  2  →  ( ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  ≠  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) )  →  2  ∈  { 2 } ) ) | 
						
							| 13 | 12 | necon1bd | ⊢ ( 𝑃  =  2  →  ( ¬  2  ∈  { 2 }  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 14 | 13 | a1dd | ⊢ ( 𝑃  =  2  →  ( ¬  2  ∈  { 2 }  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 15 | 9 14 | sylbid | ⊢ ( 𝑃  =  2  →  ( ¬  𝑃  ∈  { 2 }  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 16 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 17 |  | breq1 | ⊢ ( 𝑃  =  3  →  ( 𝑃  <  4  ↔  3  <  4 ) ) | 
						
							| 18 | 16 17 | mpbiri | ⊢ ( 𝑃  =  3  →  𝑃  <  4 ) | 
						
							| 19 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑃  =  3  →  ( 𝑃  ∈  ℕ0  ↔  3  ∈  ℕ0 ) ) | 
						
							| 21 | 19 20 | mpbiri | ⊢ ( 𝑃  =  3  →  𝑃  ∈  ℕ0 ) | 
						
							| 22 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 23 |  | divfl0 | ⊢ ( ( 𝑃  ∈  ℕ0  ∧  4  ∈  ℕ )  →  ( 𝑃  <  4  ↔  ( ⌊ ‘ ( 𝑃  /  4 ) )  =  0 ) ) | 
						
							| 24 | 21 22 23 | sylancl | ⊢ ( 𝑃  =  3  →  ( 𝑃  <  4  ↔  ( ⌊ ‘ ( 𝑃  /  4 ) )  =  0 ) ) | 
						
							| 25 | 18 24 | mpbid | ⊢ ( 𝑃  =  3  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  =  0 ) | 
						
							| 26 | 4 25 | eqtrid | ⊢ ( 𝑃  =  3  →  𝑀  =  0 ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝑀  =  0  →  ( 1 ... 𝑀 )  =  ( 1 ... 0 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ( 1 ... 𝑀 )  =  ( 1 ... 0 ) ) | 
						
							| 29 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 30 | 28 29 | eqtrdi | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ( 1 ... 𝑀 )  =  ∅ ) | 
						
							| 31 | 30 | prodeq1d | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  ∏ 𝑘  ∈  ∅ ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 32 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ ( 𝑅 ‘ 𝑘 )  =  1 | 
						
							| 33 | 31 32 | eqtrdi | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  =  1 ) | 
						
							| 34 |  | oveq1 | ⊢ ( 𝑀  =  0  →  ( 𝑀  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ( 𝑀  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 36 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 37 | 35 36 | eqtrdi | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ( 𝑀  +  1 )  =  1 ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ( ( 𝑀  +  1 ) ... 𝐻 )  =  ( 1 ... 𝐻 ) ) | 
						
							| 39 | 38 | prodeq1d | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 40 | 33 39 | oveq12d | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) )  =  ( 1  ·  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 41 |  | fzfid | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ( 1 ... 𝐻 )  ∈  Fin ) | 
						
							| 42 |  | oveq1 | ⊢ ( 𝑥  =  𝑘  →  ( 𝑥  ·  2 )  =  ( 𝑘  ·  2 ) ) | 
						
							| 43 | 42 | breq1d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 )  ↔  ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 44 | 42 | oveq2d | ⊢ ( 𝑥  =  𝑘  →  ( 𝑃  −  ( 𝑥  ·  2 ) )  =  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) | 
						
							| 45 | 43 42 44 | ifbieq12d | ⊢ ( 𝑥  =  𝑘  →  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) )  =  if ( ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑘  ·  2 ) ,  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  𝑘  ∈  ( 1 ... 𝐻 ) ) | 
						
							| 47 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 1 ... 𝐻 )  →  𝑘  ∈  ℤ ) | 
						
							| 48 | 47 | zcnd | ⊢ ( 𝑘  ∈  ( 1 ... 𝐻 )  →  𝑘  ∈  ℂ ) | 
						
							| 49 |  | 2cnd | ⊢ ( 𝑘  ∈  ( 1 ... 𝐻 )  →  2  ∈  ℂ ) | 
						
							| 50 | 48 49 | mulcld | ⊢ ( 𝑘  ∈  ( 1 ... 𝐻 )  →  ( 𝑘  ·  2 )  ∈  ℂ ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑘  ·  2 )  ∈  ℂ ) | 
						
							| 52 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 53 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 54 | 53 | zcnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 55 | 1 52 54 | 3syl | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  𝑃  ∈  ℂ ) | 
						
							| 57 | 56 51 | subcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑃  −  ( 𝑘  ·  2 ) )  ∈  ℂ ) | 
						
							| 58 | 51 57 | ifcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  if ( ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑘  ·  2 ) ,  ( 𝑃  −  ( 𝑘  ·  2 ) ) )  ∈  ℂ ) | 
						
							| 59 | 3 45 46 58 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑅 ‘ 𝑘 )  =  if ( ( 𝑘  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑘  ·  2 ) ,  ( 𝑃  −  ( 𝑘  ·  2 ) ) ) ) | 
						
							| 60 | 59 58 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 61 | 60 | adantll | ⊢ ( ( ( 𝑀  =  0  ∧  𝜑 )  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 62 | 41 61 | fprodcl | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 63 | 62 | mullidd | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ( 1  ·  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) | 
						
							| 64 | 40 63 | eqtr2d | ⊢ ( ( 𝑀  =  0  ∧  𝜑 )  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 65 | 64 | ex | ⊢ ( 𝑀  =  0  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 66 | 26 65 | syl | ⊢ ( 𝑃  =  3  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 67 | 66 | a1d | ⊢ ( 𝑃  =  3  →  ( ¬  𝑃  ∈  { 2 }  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 68 | 1 4 | gausslemma2dlem0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 69 | 68 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 70 | 69 | ltp1d | ⊢ ( 𝜑  →  𝑀  <  ( 𝑀  +  1 ) ) | 
						
							| 71 |  | fzdisj | ⊢ ( 𝑀  <  ( 𝑀  +  1 )  →  ( ( 1 ... 𝑀 )  ∩  ( ( 𝑀  +  1 ) ... 𝐻 ) )  =  ∅ ) | 
						
							| 72 | 70 71 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑀 )  ∩  ( ( 𝑀  +  1 ) ... 𝐻 ) )  =  ∅ ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ∧  𝜑 )  →  ( ( 1 ... 𝑀 )  ∩  ( ( 𝑀  +  1 ) ... 𝐻 ) )  =  ∅ ) | 
						
							| 74 |  | eluzelre | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  𝑃  ∈  ℝ ) | 
						
							| 75 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 76 | 75 | a1i | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  4  ∈  ℝ ) | 
						
							| 77 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 78 | 77 | a1i | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  4  ≠  0 ) | 
						
							| 79 | 74 76 78 | redivcld | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( 𝑃  /  4 )  ∈  ℝ ) | 
						
							| 80 | 79 | flcld | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℤ ) | 
						
							| 81 |  | nnrp | ⊢ ( 4  ∈  ℕ  →  4  ∈  ℝ+ ) | 
						
							| 82 | 22 81 | ax-mp | ⊢ 4  ∈  ℝ+ | 
						
							| 83 |  | eluz2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ↔  ( 5  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  5  ≤  𝑃 ) ) | 
						
							| 84 |  | 4lt5 | ⊢ 4  <  5 | 
						
							| 85 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 86 | 85 | a1i | ⊢ ( ( 5  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  5  ∈  ℝ ) | 
						
							| 87 |  | zre | ⊢ ( 𝑃  ∈  ℤ  →  𝑃  ∈  ℝ ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( 5  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  𝑃  ∈  ℝ ) | 
						
							| 89 |  | ltleletr | ⊢ ( ( 4  ∈  ℝ  ∧  5  ∈  ℝ  ∧  𝑃  ∈  ℝ )  →  ( ( 4  <  5  ∧  5  ≤  𝑃 )  →  4  ≤  𝑃 ) ) | 
						
							| 90 | 75 86 88 89 | mp3an2i | ⊢ ( ( 5  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( ( 4  <  5  ∧  5  ≤  𝑃 )  →  4  ≤  𝑃 ) ) | 
						
							| 91 | 84 90 | mpani | ⊢ ( ( 5  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( 5  ≤  𝑃  →  4  ≤  𝑃 ) ) | 
						
							| 92 | 91 | 3impia | ⊢ ( ( 5  ∈  ℤ  ∧  𝑃  ∈  ℤ  ∧  5  ≤  𝑃 )  →  4  ≤  𝑃 ) | 
						
							| 93 | 83 92 | sylbi | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  4  ≤  𝑃 ) | 
						
							| 94 |  | divge1 | ⊢ ( ( 4  ∈  ℝ+  ∧  𝑃  ∈  ℝ  ∧  4  ≤  𝑃 )  →  1  ≤  ( 𝑃  /  4 ) ) | 
						
							| 95 | 82 74 93 94 | mp3an2i | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  1  ≤  ( 𝑃  /  4 ) ) | 
						
							| 96 |  | 1zzd | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  1  ∈  ℤ ) | 
						
							| 97 |  | flge | ⊢ ( ( ( 𝑃  /  4 )  ∈  ℝ  ∧  1  ∈  ℤ )  →  ( 1  ≤  ( 𝑃  /  4 )  ↔  1  ≤  ( ⌊ ‘ ( 𝑃  /  4 ) ) ) ) | 
						
							| 98 | 79 96 97 | syl2anc | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( 1  ≤  ( 𝑃  /  4 )  ↔  1  ≤  ( ⌊ ‘ ( 𝑃  /  4 ) ) ) ) | 
						
							| 99 | 95 98 | mpbid | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  1  ≤  ( ⌊ ‘ ( 𝑃  /  4 ) ) ) | 
						
							| 100 |  | elnnz1 | ⊢ ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ  ↔  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℤ  ∧  1  ≤  ( ⌊ ‘ ( 𝑃  /  4 ) ) ) ) | 
						
							| 101 | 80 99 100 | sylanbrc | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ ) | 
						
							| 103 |  | oddprm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 105 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 106 | 52 105 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 108 |  | fldiv4lem1div2uz2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 109 | 107 108 | syl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 110 | 102 104 109 | 3jca | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 111 | 110 | ex | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) ) | 
						
							| 112 | 1 111 | syl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) ) | 
						
							| 113 | 112 | impcom | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ∧  𝜑 )  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 114 | 2 | oveq2i | ⊢ ( 1 ... 𝐻 )  =  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 115 | 4 114 | eleq12i | ⊢ ( 𝑀  ∈  ( 1 ... 𝐻 )  ↔  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 116 |  | elfz1b | ⊢ ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) )  ↔  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 117 | 115 116 | bitri | ⊢ ( 𝑀  ∈  ( 1 ... 𝐻 )  ↔  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  ∧  ( ⌊ ‘ ( 𝑃  /  4 ) )  ≤  ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 118 | 113 117 | sylibr | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ∧  𝜑 )  →  𝑀  ∈  ( 1 ... 𝐻 ) ) | 
						
							| 119 |  | fzsplit | ⊢ ( 𝑀  ∈  ( 1 ... 𝐻 )  →  ( 1 ... 𝐻 )  =  ( ( 1 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝐻 ) ) ) | 
						
							| 120 | 118 119 | syl | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ∧  𝜑 )  →  ( 1 ... 𝐻 )  =  ( ( 1 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝐻 ) ) ) | 
						
							| 121 |  | fzfid | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ∧  𝜑 )  →  ( 1 ... 𝐻 )  ∈  Fin ) | 
						
							| 122 | 60 | adantll | ⊢ ( ( ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ∧  𝜑 )  ∧  𝑘  ∈  ( 1 ... 𝐻 ) )  →  ( 𝑅 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 123 | 73 120 121 122 | fprodsplit | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  ∧  𝜑 )  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 124 | 123 | ex | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 125 | 124 | a1d | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 5 )  →  ( ¬  𝑃  ∈  { 2 }  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 126 | 15 67 125 | 3jaoi | ⊢ ( ( 𝑃  =  2  ∨  𝑃  =  3  ∨  𝑃  ∈  ( ℤ≥ ‘ 5 ) )  →  ( ¬  𝑃  ∈  { 2 }  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 127 | 7 126 | syl | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  𝑃  ∈  { 2 }  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) ) | 
						
							| 128 | 127 | imp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  ∈  { 2 } )  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 129 | 6 128 | sylbi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) ) | 
						
							| 130 | 1 129 | mpcom | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 1 ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) | 
						
							| 131 | 5 130 | eqtrd | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  =  ( ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( 𝑅 ‘ 𝑘 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 ) ) ) |