| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | gausslemma2d.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 1 ... 𝐻 )  ↦  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m | ⊢ 𝑀  =  ( ⌊ ‘ ( 𝑃  /  4 ) ) | 
						
							| 5 |  | gausslemma2d.n | ⊢ 𝑁  =  ( 𝐻  −  𝑀 ) | 
						
							| 6 | 1 2 3 4 | gausslemma2dlem5a | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 )  =  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( - 1  ·  ( 𝑘  ·  2 ) )  mod  𝑃 ) ) | 
						
							| 7 |  | fzfi | ⊢ ( ( 𝑀  +  1 ) ... 𝐻 )  ∈  Fin | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 ) ... 𝐻 )  ∈  Fin ) | 
						
							| 9 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  - 1  ∈  ℂ ) | 
						
							| 11 |  | elfzelz | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  𝑘  ∈  ℤ ) | 
						
							| 12 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  2  ∈  ℤ ) | 
						
							| 14 | 11 13 | zmulcld | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  ( 𝑘  ·  2 )  ∈  ℤ ) | 
						
							| 15 | 14 | zcnd | ⊢ ( 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 )  →  ( 𝑘  ·  2 )  ∈  ℂ ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) )  →  ( 𝑘  ·  2 )  ∈  ℂ ) | 
						
							| 17 | 8 10 16 | fprodmul | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( - 1  ·  ( 𝑘  ·  2 ) )  =  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) - 1  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) ) | 
						
							| 18 | 7 9 | pm3.2i | ⊢ ( ( ( 𝑀  +  1 ) ... 𝐻 )  ∈  Fin  ∧  - 1  ∈  ℂ ) | 
						
							| 19 |  | fprodconst | ⊢ ( ( ( ( 𝑀  +  1 ) ... 𝐻 )  ∈  Fin  ∧  - 1  ∈  ℂ )  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) - 1  =  ( - 1 ↑ ( ♯ ‘ ( ( 𝑀  +  1 ) ... 𝐻 ) ) ) ) | 
						
							| 20 | 18 19 | mp1i | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) - 1  =  ( - 1 ↑ ( ♯ ‘ ( ( 𝑀  +  1 ) ... 𝐻 ) ) ) ) | 
						
							| 21 |  | nnoddn2prm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 22 |  | nnre | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  𝑃  ∈  ℝ ) | 
						
							| 24 | 1 21 23 | 3syl | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 25 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  4  ∈  ℝ ) | 
						
							| 27 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  4  ≠  0 ) | 
						
							| 29 | 24 26 28 | redivcld | ⊢ ( 𝜑  →  ( 𝑃  /  4 )  ∈  ℝ ) | 
						
							| 30 | 29 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℤ ) | 
						
							| 31 | 4 30 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 32 | 31 | peano2zd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 33 |  | nnz | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℤ ) | 
						
							| 34 |  | oddm1d2 | ⊢ ( 𝑃  ∈  ℤ  →  ( ¬  2  ∥  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝑃  ∈  ℕ  →  ( ¬  2  ∥  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 36 | 35 | biimpa | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 37 | 1 21 36 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 38 | 2 37 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  ℤ ) | 
						
							| 39 | 1 4 2 | gausslemma2dlem0f | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ≤  𝐻 ) | 
						
							| 40 |  | eluz2 | ⊢ ( 𝐻  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↔  ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝐻  ∈  ℤ  ∧  ( 𝑀  +  1 )  ≤  𝐻 ) ) | 
						
							| 41 | 32 38 39 40 | syl3anbrc | ⊢ ( 𝜑  →  𝐻  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 42 |  | hashfz | ⊢ ( 𝐻  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( ♯ ‘ ( ( 𝑀  +  1 ) ... 𝐻 ) )  =  ( ( 𝐻  −  ( 𝑀  +  1 ) )  +  1 ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑀  +  1 ) ... 𝐻 ) )  =  ( ( 𝐻  −  ( 𝑀  +  1 ) )  +  1 ) ) | 
						
							| 44 | 38 | zcnd | ⊢ ( 𝜑  →  𝐻  ∈  ℂ ) | 
						
							| 45 | 31 | zcnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 46 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 47 | 44 45 46 | nppcan2d | ⊢ ( 𝜑  →  ( ( 𝐻  −  ( 𝑀  +  1 ) )  +  1 )  =  ( 𝐻  −  𝑀 ) ) | 
						
							| 48 | 47 5 | eqtr4di | ⊢ ( 𝜑  →  ( ( 𝐻  −  ( 𝑀  +  1 ) )  +  1 )  =  𝑁 ) | 
						
							| 49 | 43 48 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑀  +  1 ) ... 𝐻 ) )  =  𝑁 ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( 𝜑  →  ( - 1 ↑ ( ♯ ‘ ( ( 𝑀  +  1 ) ... 𝐻 ) ) )  =  ( - 1 ↑ 𝑁 ) ) | 
						
							| 51 | 20 50 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) - 1  =  ( - 1 ↑ 𝑁 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) - 1  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) ) | 
						
							| 53 | 17 52 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( - 1  ·  ( 𝑘  ·  2 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) ) ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( - 1  ·  ( 𝑘  ·  2 ) )  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  mod  𝑃 ) ) | 
						
							| 55 | 6 54 | eqtrd | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑅 ‘ 𝑘 )  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ∏ 𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝐻 ) ( 𝑘  ·  2 ) )  mod  𝑃 ) ) |