Metamath Proof Explorer


Theorem gbege6

Description: Any even Goldbach number is greater than or equal to 6. Because of 6gbe , this bound is strict. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbege6 ( 𝑍 ∈ GoldbachEven → 6 ≤ 𝑍 )

Proof

Step Hyp Ref Expression
1 gbepos ( 𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ )
2 gbegt5 ( 𝑍 ∈ GoldbachEven → 5 < 𝑍 )
3 5nn 5 ∈ ℕ
4 3 nnzi 5 ∈ ℤ
5 nnz ( 𝑍 ∈ ℕ → 𝑍 ∈ ℤ )
6 zltp1le ( ( 5 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 5 < 𝑍 ↔ ( 5 + 1 ) ≤ 𝑍 ) )
7 4 5 6 sylancr ( 𝑍 ∈ ℕ → ( 5 < 𝑍 ↔ ( 5 + 1 ) ≤ 𝑍 ) )
8 7 biimpd ( 𝑍 ∈ ℕ → ( 5 < 𝑍 → ( 5 + 1 ) ≤ 𝑍 ) )
9 5p1e6 ( 5 + 1 ) = 6
10 9 breq1i ( ( 5 + 1 ) ≤ 𝑍 ↔ 6 ≤ 𝑍 )
11 8 10 syl6ib ( 𝑍 ∈ ℕ → ( 5 < 𝑍 → 6 ≤ 𝑍 ) )
12 1 2 11 sylc ( 𝑍 ∈ GoldbachEven → 6 ≤ 𝑍 )