Step |
Hyp |
Ref |
Expression |
1 |
|
isgbe |
⊢ ( 𝑍 ∈ GoldbachEven ↔ ( 𝑍 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) ) |
2 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
3 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
4 |
|
nnaddcl |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( 𝑝 + 𝑞 ) ∈ ℕ ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℕ ) |
6 |
|
eleq1 |
⊢ ( 𝑍 = ( 𝑝 + 𝑞 ) → ( 𝑍 ∈ ℕ ↔ ( 𝑝 + 𝑞 ) ∈ ℕ ) ) |
7 |
5 6
|
syl5ibr |
⊢ ( 𝑍 = ( 𝑝 + 𝑞 ) → ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → 𝑍 ∈ ℕ ) ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) → ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → 𝑍 ∈ ℕ ) ) |
9 |
8
|
com12 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) → 𝑍 ∈ ℕ ) ) |
10 |
9
|
a1i |
⊢ ( 𝑍 ∈ Even → ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) → 𝑍 ∈ ℕ ) ) ) |
11 |
10
|
rexlimdvv |
⊢ ( 𝑍 ∈ Even → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) → 𝑍 ∈ ℕ ) ) |
12 |
11
|
imp |
⊢ ( ( 𝑍 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = ( 𝑝 + 𝑞 ) ) ) → 𝑍 ∈ ℕ ) |
13 |
1 12
|
sylbi |
⊢ ( 𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ ) |