| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 2 |
1
|
reximi |
⊢ ( ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 3 |
2
|
reximi |
⊢ ( ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 4 |
3
|
reximi |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 5 |
4
|
anim2i |
⊢ ( ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) → ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 6 |
|
isgbo |
⊢ ( 𝑍 ∈ GoldbachOdd ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 7 |
|
isgbow |
⊢ ( 𝑍 ∈ GoldbachOddW ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 8 |
5 6 7
|
3imtr4i |
⊢ ( 𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) |