Metamath Proof Explorer


Theorem gboodd

Description: An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion gboodd ( 𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd )

Proof

Step Hyp Ref Expression
1 gbogbow ( 𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW )
2 gbowodd ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd )
3 1 2 syl ( 𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd )