Metamath Proof Explorer


Theorem gbowge7

Description: Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow , this bound is strict. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbowge7 ( 𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍 )

Proof

Step Hyp Ref Expression
1 gbowgt5 ( 𝑍 ∈ GoldbachOddW → 5 < 𝑍 )
2 gbowpos ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ )
3 5nn 5 ∈ ℕ
4 3 nnzi 5 ∈ ℤ
5 nnz ( 𝑍 ∈ ℕ → 𝑍 ∈ ℤ )
6 zltp1le ( ( 5 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 5 < 𝑍 ↔ ( 5 + 1 ) ≤ 𝑍 ) )
7 4 5 6 sylancr ( 𝑍 ∈ ℕ → ( 5 < 𝑍 ↔ ( 5 + 1 ) ≤ 𝑍 ) )
8 7 biimpd ( 𝑍 ∈ ℕ → ( 5 < 𝑍 → ( 5 + 1 ) ≤ 𝑍 ) )
9 2 8 syl ( 𝑍 ∈ GoldbachOddW → ( 5 < 𝑍 → ( 5 + 1 ) ≤ 𝑍 ) )
10 5p1e6 ( 5 + 1 ) = 6
11 10 breq1i ( ( 5 + 1 ) ≤ 𝑍 ↔ 6 ≤ 𝑍 )
12 6re 6 ∈ ℝ
13 2 nnred ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℝ )
14 leloe ( ( 6 ∈ ℝ ∧ 𝑍 ∈ ℝ ) → ( 6 ≤ 𝑍 ↔ ( 6 < 𝑍 ∨ 6 = 𝑍 ) ) )
15 12 13 14 sylancr ( 𝑍 ∈ GoldbachOddW → ( 6 ≤ 𝑍 ↔ ( 6 < 𝑍 ∨ 6 = 𝑍 ) ) )
16 11 15 syl5bb ( 𝑍 ∈ GoldbachOddW → ( ( 5 + 1 ) ≤ 𝑍 ↔ ( 6 < 𝑍 ∨ 6 = 𝑍 ) ) )
17 6nn 6 ∈ ℕ
18 17 nnzi 6 ∈ ℤ
19 2 nnzd ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℤ )
20 zltp1le ( ( 6 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 6 < 𝑍 ↔ ( 6 + 1 ) ≤ 𝑍 ) )
21 20 biimpd ( ( 6 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 6 < 𝑍 → ( 6 + 1 ) ≤ 𝑍 ) )
22 18 19 21 sylancr ( 𝑍 ∈ GoldbachOddW → ( 6 < 𝑍 → ( 6 + 1 ) ≤ 𝑍 ) )
23 6p1e7 ( 6 + 1 ) = 7
24 23 breq1i ( ( 6 + 1 ) ≤ 𝑍 ↔ 7 ≤ 𝑍 )
25 22 24 syl6ib ( 𝑍 ∈ GoldbachOddW → ( 6 < 𝑍 → 7 ≤ 𝑍 ) )
26 isgbow ( 𝑍 ∈ GoldbachOddW ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) )
27 eleq1 ( 6 = 𝑍 → ( 6 ∈ Odd ↔ 𝑍 ∈ Odd ) )
28 6even 6 ∈ Even
29 evennodd ( 6 ∈ Even → ¬ 6 ∈ Odd )
30 pm2.21 ( ¬ 6 ∈ Odd → ( 6 ∈ Odd → 7 ≤ 𝑍 ) )
31 28 29 30 mp2b ( 6 ∈ Odd → 7 ≤ 𝑍 )
32 27 31 syl6bir ( 6 = 𝑍 → ( 𝑍 ∈ Odd → 7 ≤ 𝑍 ) )
33 32 com12 ( 𝑍 ∈ Odd → ( 6 = 𝑍 → 7 ≤ 𝑍 ) )
34 33 adantr ( ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ( 6 = 𝑍 → 7 ≤ 𝑍 ) )
35 26 34 sylbi ( 𝑍 ∈ GoldbachOddW → ( 6 = 𝑍 → 7 ≤ 𝑍 ) )
36 25 35 jaod ( 𝑍 ∈ GoldbachOddW → ( ( 6 < 𝑍 ∨ 6 = 𝑍 ) → 7 ≤ 𝑍 ) )
37 16 36 sylbid ( 𝑍 ∈ GoldbachOddW → ( ( 5 + 1 ) ≤ 𝑍 → 7 ≤ 𝑍 ) )
38 9 37 syld ( 𝑍 ∈ GoldbachOddW → ( 5 < 𝑍 → 7 ≤ 𝑍 ) )
39 1 38 mpd ( 𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍 )