Step |
Hyp |
Ref |
Expression |
1 |
|
gbowgt5 |
⊢ ( 𝑍 ∈ GoldbachOddW → 5 < 𝑍 ) |
2 |
|
gbowpos |
⊢ ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ ) |
3 |
|
5nn |
⊢ 5 ∈ ℕ |
4 |
3
|
nnzi |
⊢ 5 ∈ ℤ |
5 |
|
nnz |
⊢ ( 𝑍 ∈ ℕ → 𝑍 ∈ ℤ ) |
6 |
|
zltp1le |
⊢ ( ( 5 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 5 < 𝑍 ↔ ( 5 + 1 ) ≤ 𝑍 ) ) |
7 |
4 5 6
|
sylancr |
⊢ ( 𝑍 ∈ ℕ → ( 5 < 𝑍 ↔ ( 5 + 1 ) ≤ 𝑍 ) ) |
8 |
7
|
biimpd |
⊢ ( 𝑍 ∈ ℕ → ( 5 < 𝑍 → ( 5 + 1 ) ≤ 𝑍 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝑍 ∈ GoldbachOddW → ( 5 < 𝑍 → ( 5 + 1 ) ≤ 𝑍 ) ) |
10 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
11 |
10
|
breq1i |
⊢ ( ( 5 + 1 ) ≤ 𝑍 ↔ 6 ≤ 𝑍 ) |
12 |
|
6re |
⊢ 6 ∈ ℝ |
13 |
2
|
nnred |
⊢ ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℝ ) |
14 |
|
leloe |
⊢ ( ( 6 ∈ ℝ ∧ 𝑍 ∈ ℝ ) → ( 6 ≤ 𝑍 ↔ ( 6 < 𝑍 ∨ 6 = 𝑍 ) ) ) |
15 |
12 13 14
|
sylancr |
⊢ ( 𝑍 ∈ GoldbachOddW → ( 6 ≤ 𝑍 ↔ ( 6 < 𝑍 ∨ 6 = 𝑍 ) ) ) |
16 |
11 15
|
syl5bb |
⊢ ( 𝑍 ∈ GoldbachOddW → ( ( 5 + 1 ) ≤ 𝑍 ↔ ( 6 < 𝑍 ∨ 6 = 𝑍 ) ) ) |
17 |
|
6nn |
⊢ 6 ∈ ℕ |
18 |
17
|
nnzi |
⊢ 6 ∈ ℤ |
19 |
2
|
nnzd |
⊢ ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℤ ) |
20 |
|
zltp1le |
⊢ ( ( 6 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 6 < 𝑍 ↔ ( 6 + 1 ) ≤ 𝑍 ) ) |
21 |
20
|
biimpd |
⊢ ( ( 6 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 6 < 𝑍 → ( 6 + 1 ) ≤ 𝑍 ) ) |
22 |
18 19 21
|
sylancr |
⊢ ( 𝑍 ∈ GoldbachOddW → ( 6 < 𝑍 → ( 6 + 1 ) ≤ 𝑍 ) ) |
23 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
24 |
23
|
breq1i |
⊢ ( ( 6 + 1 ) ≤ 𝑍 ↔ 7 ≤ 𝑍 ) |
25 |
22 24
|
syl6ib |
⊢ ( 𝑍 ∈ GoldbachOddW → ( 6 < 𝑍 → 7 ≤ 𝑍 ) ) |
26 |
|
isgbow |
⊢ ( 𝑍 ∈ GoldbachOddW ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
27 |
|
eleq1 |
⊢ ( 6 = 𝑍 → ( 6 ∈ Odd ↔ 𝑍 ∈ Odd ) ) |
28 |
|
6even |
⊢ 6 ∈ Even |
29 |
|
evennodd |
⊢ ( 6 ∈ Even → ¬ 6 ∈ Odd ) |
30 |
|
pm2.21 |
⊢ ( ¬ 6 ∈ Odd → ( 6 ∈ Odd → 7 ≤ 𝑍 ) ) |
31 |
28 29 30
|
mp2b |
⊢ ( 6 ∈ Odd → 7 ≤ 𝑍 ) |
32 |
27 31
|
syl6bir |
⊢ ( 6 = 𝑍 → ( 𝑍 ∈ Odd → 7 ≤ 𝑍 ) ) |
33 |
32
|
com12 |
⊢ ( 𝑍 ∈ Odd → ( 6 = 𝑍 → 7 ≤ 𝑍 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ( 6 = 𝑍 → 7 ≤ 𝑍 ) ) |
35 |
26 34
|
sylbi |
⊢ ( 𝑍 ∈ GoldbachOddW → ( 6 = 𝑍 → 7 ≤ 𝑍 ) ) |
36 |
25 35
|
jaod |
⊢ ( 𝑍 ∈ GoldbachOddW → ( ( 6 < 𝑍 ∨ 6 = 𝑍 ) → 7 ≤ 𝑍 ) ) |
37 |
16 36
|
sylbid |
⊢ ( 𝑍 ∈ GoldbachOddW → ( ( 5 + 1 ) ≤ 𝑍 → 7 ≤ 𝑍 ) ) |
38 |
9 37
|
syld |
⊢ ( 𝑍 ∈ GoldbachOddW → ( 5 < 𝑍 → 7 ≤ 𝑍 ) ) |
39 |
1 38
|
mpd |
⊢ ( 𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍 ) |