| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isgbow |
⊢ ( 𝑍 ∈ GoldbachOddW ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 2 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 3 |
|
eluz2 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ) |
| 4 |
2 3
|
sylib |
⊢ ( 𝑝 ∈ ℙ → ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ) |
| 5 |
|
prmuz2 |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ( ℤ≥ ‘ 2 ) ) |
| 6 |
|
eluz2 |
⊢ ( 𝑞 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝑞 ∈ ℙ → ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) |
| 8 |
4 7
|
anim12i |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) ) |
| 9 |
|
prmuz2 |
⊢ ( 𝑟 ∈ ℙ → 𝑟 ∈ ( ℤ≥ ‘ 2 ) ) |
| 10 |
|
eluz2 |
⊢ ( 𝑟 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝑟 ∈ ℙ → ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) |
| 12 |
|
zre |
⊢ ( 𝑝 ∈ ℤ → 𝑝 ∈ ℝ ) |
| 13 |
12
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) → 𝑝 ∈ ℝ ) |
| 14 |
|
zre |
⊢ ( 𝑞 ∈ ℤ → 𝑞 ∈ ℝ ) |
| 15 |
14
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → 𝑞 ∈ ℝ ) |
| 16 |
13 15
|
anim12i |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( 𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ ) ) |
| 17 |
|
2re |
⊢ 2 ∈ ℝ |
| 18 |
17 17
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 2 ∈ ℝ ) |
| 19 |
16 18
|
jctil |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( ( 2 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ ) ) ) |
| 20 |
|
simp3 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) → 2 ≤ 𝑝 ) |
| 21 |
|
simp3 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → 2 ≤ 𝑞 ) |
| 22 |
20 21
|
anim12i |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( 2 ≤ 𝑝 ∧ 2 ≤ 𝑞 ) ) |
| 23 |
|
le2add |
⊢ ( ( ( 2 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ ) ) → ( ( 2 ≤ 𝑝 ∧ 2 ≤ 𝑞 ) → ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) ) ) |
| 24 |
19 22 23
|
sylc |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) ) |
| 25 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
| 26 |
25
|
breq1i |
⊢ ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) ↔ 4 ≤ ( 𝑝 + 𝑞 ) ) |
| 27 |
|
zaddcl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℤ ) |
| 28 |
27
|
zred |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℝ ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) → ( 𝑝 + 𝑞 ) ∈ ℝ ) |
| 30 |
|
zre |
⊢ ( 𝑟 ∈ ℤ → 𝑟 ∈ ℝ ) |
| 31 |
30
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 𝑟 ∈ ℝ ) |
| 32 |
29 31
|
anim12i |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( ( 𝑝 + 𝑞 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) ) |
| 33 |
|
4re |
⊢ 4 ∈ ℝ |
| 34 |
33 17
|
pm3.2i |
⊢ ( 4 ∈ ℝ ∧ 2 ∈ ℝ ) |
| 35 |
32 34
|
jctil |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( ( 4 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( ( 𝑝 + 𝑞 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) ) ) |
| 36 |
|
simpr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) → 4 ≤ ( 𝑝 + 𝑞 ) ) |
| 37 |
|
simp3 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 2 ≤ 𝑟 ) |
| 38 |
36 37
|
anim12i |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( 4 ≤ ( 𝑝 + 𝑞 ) ∧ 2 ≤ 𝑟 ) ) |
| 39 |
|
le2add |
⊢ ( ( ( 4 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( ( 𝑝 + 𝑞 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) ) → ( ( 4 ≤ ( 𝑝 + 𝑞 ) ∧ 2 ≤ 𝑟 ) → ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 40 |
35 38 39
|
sylc |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 41 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
| 42 |
41
|
breq1i |
⊢ ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 6 ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 43 |
|
5lt6 |
⊢ 5 < 6 |
| 44 |
|
5re |
⊢ 5 ∈ ℝ |
| 45 |
44
|
a1i |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → 5 ∈ ℝ ) |
| 46 |
|
6re |
⊢ 6 ∈ ℝ |
| 47 |
46
|
a1i |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → 6 ∈ ℝ ) |
| 48 |
27
|
adantr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℤ ) |
| 49 |
|
simpr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → 𝑟 ∈ ℤ ) |
| 50 |
48 49
|
zaddcld |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℤ ) |
| 51 |
50
|
zred |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℝ ) |
| 52 |
|
ltletr |
⊢ ( ( 5 ∈ ℝ ∧ 6 ∈ ℝ ∧ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℝ ) → ( ( 5 < 6 ∧ 6 ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 53 |
45 47 51 52
|
syl3anc |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( ( 5 < 6 ∧ 6 ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 54 |
43 53
|
mpani |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( 6 ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 55 |
42 54
|
biimtrid |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 56 |
55
|
expcom |
⊢ ( 𝑟 ∈ ℤ → ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 57 |
56
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 58 |
57
|
com12 |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 60 |
59
|
imp |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 61 |
40 60
|
mpd |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 62 |
61
|
exp31 |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 4 ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 63 |
26 62
|
biimtrid |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 64 |
63
|
expcom |
⊢ ( 𝑞 ∈ ℤ → ( 𝑝 ∈ ℤ → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
| 65 |
64
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → ( 𝑝 ∈ ℤ → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
| 66 |
65
|
com12 |
⊢ ( 𝑝 ∈ ℤ → ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
| 67 |
66
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) → ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
| 68 |
67
|
imp |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 69 |
24 68
|
mpd |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 70 |
69
|
imp |
⊢ ( ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 71 |
|
breq2 |
⊢ ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ( 5 < 𝑍 ↔ 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 72 |
70 71
|
syl5ibrcom |
⊢ ( ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
| 73 |
8 11 72
|
syl2an |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
| 74 |
73
|
rexlimdva |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝑍 ∈ Odd ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) → ( ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
| 76 |
75
|
rexlimdvva |
⊢ ( 𝑍 ∈ Odd → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
| 77 |
76
|
imp |
⊢ ( ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 5 < 𝑍 ) |
| 78 |
1 77
|
sylbi |
⊢ ( 𝑍 ∈ GoldbachOddW → 5 < 𝑍 ) |