Step |
Hyp |
Ref |
Expression |
1 |
|
isgbow |
⊢ ( 𝑍 ∈ GoldbachOddW ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
2 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
eluz2 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ) |
4 |
2 3
|
sylib |
⊢ ( 𝑝 ∈ ℙ → ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ) |
5 |
|
prmuz2 |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ( ℤ≥ ‘ 2 ) ) |
6 |
|
eluz2 |
⊢ ( 𝑞 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) |
7 |
5 6
|
sylib |
⊢ ( 𝑞 ∈ ℙ → ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) |
8 |
4 7
|
anim12i |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) ) |
9 |
|
prmuz2 |
⊢ ( 𝑟 ∈ ℙ → 𝑟 ∈ ( ℤ≥ ‘ 2 ) ) |
10 |
|
eluz2 |
⊢ ( 𝑟 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) |
11 |
9 10
|
sylib |
⊢ ( 𝑟 ∈ ℙ → ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) |
12 |
|
zre |
⊢ ( 𝑝 ∈ ℤ → 𝑝 ∈ ℝ ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) → 𝑝 ∈ ℝ ) |
14 |
|
zre |
⊢ ( 𝑞 ∈ ℤ → 𝑞 ∈ ℝ ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → 𝑞 ∈ ℝ ) |
16 |
13 15
|
anim12i |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( 𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ ) ) |
17 |
|
2re |
⊢ 2 ∈ ℝ |
18 |
17 17
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 2 ∈ ℝ ) |
19 |
16 18
|
jctil |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( ( 2 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ ) ) ) |
20 |
|
simp3 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) → 2 ≤ 𝑝 ) |
21 |
|
simp3 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → 2 ≤ 𝑞 ) |
22 |
20 21
|
anim12i |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( 2 ≤ 𝑝 ∧ 2 ≤ 𝑞 ) ) |
23 |
|
le2add |
⊢ ( ( ( 2 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ ) ) → ( ( 2 ≤ 𝑝 ∧ 2 ≤ 𝑞 ) → ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) ) ) |
24 |
19 22 23
|
sylc |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) ) |
25 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
26 |
25
|
breq1i |
⊢ ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) ↔ 4 ≤ ( 𝑝 + 𝑞 ) ) |
27 |
|
zaddcl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℤ ) |
28 |
27
|
zred |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) → ( 𝑝 + 𝑞 ) ∈ ℝ ) |
30 |
|
zre |
⊢ ( 𝑟 ∈ ℤ → 𝑟 ∈ ℝ ) |
31 |
30
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 𝑟 ∈ ℝ ) |
32 |
29 31
|
anim12i |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( ( 𝑝 + 𝑞 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) ) |
33 |
|
4re |
⊢ 4 ∈ ℝ |
34 |
33 17
|
pm3.2i |
⊢ ( 4 ∈ ℝ ∧ 2 ∈ ℝ ) |
35 |
32 34
|
jctil |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( ( 4 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( ( 𝑝 + 𝑞 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) → 4 ≤ ( 𝑝 + 𝑞 ) ) |
37 |
|
simp3 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 2 ≤ 𝑟 ) |
38 |
36 37
|
anim12i |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( 4 ≤ ( 𝑝 + 𝑞 ) ∧ 2 ≤ 𝑟 ) ) |
39 |
|
le2add |
⊢ ( ( ( 4 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( ( 𝑝 + 𝑞 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) ) → ( ( 4 ≤ ( 𝑝 + 𝑞 ) ∧ 2 ≤ 𝑟 ) → ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
40 |
35 38 39
|
sylc |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
41 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
42 |
41
|
breq1i |
⊢ ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 6 ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
43 |
|
5lt6 |
⊢ 5 < 6 |
44 |
|
5re |
⊢ 5 ∈ ℝ |
45 |
44
|
a1i |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → 5 ∈ ℝ ) |
46 |
|
6re |
⊢ 6 ∈ ℝ |
47 |
46
|
a1i |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → 6 ∈ ℝ ) |
48 |
27
|
adantr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℤ ) |
49 |
|
simpr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → 𝑟 ∈ ℤ ) |
50 |
48 49
|
zaddcld |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℤ ) |
51 |
50
|
zred |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℝ ) |
52 |
|
ltletr |
⊢ ( ( 5 ∈ ℝ ∧ 6 ∈ ℝ ∧ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℝ ) → ( ( 5 < 6 ∧ 6 ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
53 |
45 47 51 52
|
syl3anc |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( ( 5 < 6 ∧ 6 ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
54 |
43 53
|
mpani |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( 6 ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
55 |
42 54
|
syl5bi |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 𝑟 ∈ ℤ ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
56 |
55
|
expcom |
⊢ ( 𝑟 ∈ ℤ → ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
57 |
56
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
58 |
57
|
com12 |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
60 |
59
|
imp |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( ( 4 + 2 ) ≤ ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
61 |
40 60
|
mpd |
⊢ ( ( ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) ∧ 4 ≤ ( 𝑝 + 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
62 |
61
|
exp31 |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 4 ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
63 |
26 62
|
syl5bi |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
64 |
63
|
expcom |
⊢ ( 𝑞 ∈ ℤ → ( 𝑝 ∈ ℤ → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
65 |
64
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → ( 𝑝 ∈ ℤ → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
66 |
65
|
com12 |
⊢ ( 𝑝 ∈ ℤ → ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
67 |
66
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) → ( ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
68 |
67
|
imp |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( ( 2 + 2 ) ≤ ( 𝑝 + 𝑞 ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
69 |
24 68
|
mpd |
⊢ ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) → ( ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
70 |
69
|
imp |
⊢ ( ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
71 |
|
breq2 |
⊢ ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ( 5 < 𝑍 ↔ 5 < ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
72 |
70 71
|
syl5ibrcom |
⊢ ( ( ( ( 2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝 ) ∧ ( 2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞 ) ) ∧ ( 2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟 ) ) → ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
73 |
8 11 72
|
syl2an |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
74 |
73
|
rexlimdva |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝑍 ∈ Odd ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) → ( ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
76 |
75
|
rexlimdvva |
⊢ ( 𝑍 ∈ Odd → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 5 < 𝑍 ) ) |
77 |
76
|
imp |
⊢ ( ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 5 < 𝑍 ) |
78 |
1 77
|
sylbi |
⊢ ( 𝑍 ∈ GoldbachOddW → 5 < 𝑍 ) |