| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isgbow |
⊢ ( 𝑍 ∈ GoldbachOddW ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 2 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 3 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
| 4 |
2 3
|
anim12i |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) |
| 6 |
|
nnaddcl |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( 𝑝 + 𝑞 ) ∈ ℕ ) |
| 7 |
5 6
|
syl |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℕ ) |
| 8 |
|
prmnn |
⊢ ( 𝑟 ∈ ℙ → 𝑟 ∈ ℕ ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → 𝑟 ∈ ℕ ) |
| 10 |
7 9
|
nnaddcld |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℕ ) |
| 11 |
|
eleq1 |
⊢ ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ( 𝑍 ∈ ℕ ↔ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℕ ) ) |
| 12 |
10 11
|
syl5ibrcom |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 𝑍 ∈ ℕ ) ) |
| 13 |
12
|
rexlimdva |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 𝑍 ∈ ℕ ) ) |
| 14 |
13
|
a1i |
⊢ ( 𝑍 ∈ Odd → ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 𝑍 ∈ ℕ ) ) ) |
| 15 |
14
|
rexlimdvv |
⊢ ( 𝑍 ∈ Odd → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 𝑍 ∈ ℕ ) ) |
| 16 |
15
|
imp |
⊢ ( ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 𝑍 ∈ ℕ ) |
| 17 |
1 16
|
sylbi |
⊢ ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ ) |